
Composition Machines: Programming
Self-Organising Software Models for the
Emergence of Sequential Program Spaces

Damian Arellanes[0000−0002−0074−390X]

Lancaster University, Lancaster LA1 4WA, United Kingdom
damian.arellanes@lancaster.ac.uk

Abstract. We are entering a new era in which software systems are
becoming more and more complex and larger. So, the composition of
such systems is becoming infeasible by manual means. To address this
challenge, self-organising software models represent a promising direction
since they allow the (bottom-up) emergence of complex computational
structures from simple rules. In this paper, we propose an abstract ma-
chine, called the composition machine, which allows the definition and
the execution of such models. Unlike typical abstract machines, our pro-
posal does not compute individual programs but enables the emergence
of multiple programs at once. We particularly present the machine’s se-
mantics and demonstrate its operation with well-known rules from the
realm of Boolean logic and elementary cellular automata.

Keywords: Automatic Software Composition · Self-Organising Soft-
ware Models · Emergent Software · Applied Category Theory.

1 Introduction

Building programs that build programs is a long-standing challenge which has
been considered the holy grail of Computer Science since the inception of Artifi-
cial Intelligence [15,23,31]. As software systems are becoming increasingly large
and complex (e.g., Cyber-Physical Systems [6]), this challenge needs to be seri-
ously considered for avoiding the infeasibility of manual composition of complex
software at scale.

As a first step towards this challenge, we have introduced the notion of compo-
sition by self-organisation in which complex software models are not explicitly
programmed, but emerge from simple rules in a decentralised manner [4]. In
this paper, we propose a discrete-time abstract machine that fits into such a
paradigm, called the composition machine, for the definition and the execution
of self-organising software models. In this context, a software model is not a sin-
gle program performing a specific functionality, but a space of programs evolving
through well-defined, deterministic self-organisation rules. Thus, the goal of the
composition machine is not the computation of a fixed functionality, but the
time-dependent emergence of multiple programs at once. Multiple programs are

2 D. Arellanes

encapsulated in spaces which are self-similar computational structures rooted in
Category Theory. We adopt this formalism for leveraging the large corpus of ex-
isting theorems in categorical settings, particularly those related to composition
properties.

The rest of the paper is structured as follows. Section 2 sets the context
of the paper and discusses related work. Section 3 introduces preliminaries for
the formal definition of the proposed machine. Section 4 presents the semantics
of composition and program spaces. Section 5 describes the semantics of the
composition machine. Section 6 presents an example in which complex program
spaces emerge from simple rules. Finally, Section 7 presents future directions
and final remarks.

2 Related Work

The work we propose in this paper is motivated by the problem of automated
software composition, an active research problem that falls under the umbrella of
program synthesis [15]. Program synthesis is a field that has aimed at providing
methods, techniques and tools to automatically generate individual programs
without explicitly coding them, usually from high-level specifications. Diverse
algorithmic techniques to achive this task have been proposed over time such
as inductive program synthesis [38], stochastic search [2] and constraint solving
[19]. Unlike most of the work done in program synthesis, our intent is not to offer
efficient algorithms to synthesize individual programs, but to provide an actual
abstract machine able to automatically produce spaces of sequential programs
at every step of its discrete-time operation process. Our abstract machine is
implementation-independent and serves to capture the very essence of program
emergence from simple rules. Accordingly, it just requires an initial configuration,
a set of simple operation rules and a fixed number of elementary programs (from
which complex sequential programs emerge over time).

Likewise, our work is related to automatic component composition (or what
we call synthesis-in-the-large) [22] which consists on automatically finding op-
timal component-based configurations (or software architectures) that better
satisfy specific (functional or non-functional) requirements such as reliability,
response time or even end-user specifications. A vast number of approaches have
been proposed over time to tackle this problem, ranging from AI planning [26]
to evolutionary algorithms [18,30], especially for the realm of service-oriented
computing. Apart from purely algorithmic solutions, self-adaptive component
models [10,13,14,17,34] have also been proposed to enable structural manipula-
tion of individual composite components under uncertain, dynamically changing
environments. Unfortunately, dynamically changing a composite requires ad hoc
algorithmic mechanisms that lie beyond component model semantics, e.g., a
feedback control loop or an assembly-perception-learning framework. Some self-
adaptive component models provide semantic constructs to dynamically switch
between a small number of hardcoded composite variants [13,14]. These vari-
ants are not generated automatically but need to be manually coded by some

Composition Machines 3

designer. We are aware of only one component model [7] offering algebraic opera-
tors for semantically defining explicit spaces of sequential composites. Although
individual composites are not created manually, the spaces that contain them
are. To algorithmically collapse spaces into individual composites, such a model
has been endowed with a MAPE-K controller [5] which, again, is “semantically
intrusive” as it does not form part of the model semantics. In contrast to existing
self-adaptive component models, the abstract machine we propose in this paper
does not require any “intrusive entities” since the synthesis process is entirely
governed by the operational semantics of the machine per se.

Like our abstract machine, self-assembly models of computation [37] are
not intrusive in the sense they offer well-founded semantic constructs for the
emergence of complex structures from simple rules. Algorithmic tile-based self-
assembly [12] is the most representative example in this class of models of compu-
tation. Computing via self-assembly has its roots in the core principles of Cellular
Automata (CAs). Generally speaking, CAs are discrete dynamical systems that
exhibit complex global behaviour from a set of locally interacting components
[36]. Network automata [8,28,32,35] form a particular class of CAs, whose aim is
to encode fixed transition rules for the evolution of a graph configuration. In this
way, complex graph structures can emerge over time and halting occurs when a
certain (stable) configuration pattern oscillates ad infinitum.

Although they have some similarities, our abstract machine and CA-related
approaches differ in their core underlying semantics and purpose. While a CA
is just a collection of cells that form some pattern via well-defined rules, our
machine defines a collection of cells that categorically represent some sequential
computation each. So, the global state of our machine is equivalent to a space
of programs that exist at some point in time. More precisely, the global state
is a category that defines all the possible sequential compositions at a certain
instant. So, unlike a CA, the purpose of our machine is not the computation of
a single program but the emergence of entire spaces each containing a single or
multiple sequential programs.

Kolmogorov machines [16] and storage modification machines [29] are also re-
lated to our work as they allow the dynamic evolution of connected graphs. How-
ever, like CAs, they only operate over time-varying graphs which can represent a
single program each. Graph rewriting [25] also yields a model for computing over
individual directed acyclic graphs via rule-based graph transformations. Their
focus is on the computation of individual programs, not on on the emergence of
program spaces.

3 Preliminaries

This section presents preliminaries in terms of Category Theory and Quiver
Theory for the formal specification of the proposed machine. Our intention is not
to provide a deeper analysis, but just to present the most important definitions
and theorems for our purposes. For a deeper treatment of categorical foundations
and quivers, we refer the reader to [9,11,24].

4 D. Arellanes

3.1 Category Theory

A category consists of a collection of objects, a collection of morphisms between
objects, an identity morphism for each object and a way to compose morphisms.
There are two laws that composition must satisfy: associativity and unity. As-
sociativity yields the same composite no matter how composition operands are
grouped, and unity leaves unchanged a non-identity morphism when it is com-
posed with an identity morphism. To better understand the semantics of a cat-
egory, let us describe an example:

Definition 1 (Category of Sets). S is the category where:

– S0 is a collection of sets, called objects,
– S1 is a collection of functions between sets, called morphisms,
– dom : S1 → S0 is a collection morphism that takes each function f ∈ S1 to

its domain dom(f) ∈ S0,
– cod : S1 → S0 is a collection morphism that takes each function f ∈ S1 to

its codomain cod(f) ∈ S0,
– there is an identity function 1X : X → X for each set X ∈ S0 such that

1X ∈ S1,
– there is a composite function g ◦ f ∈ S1 for every pair (f, g) ∈ S1 × S1

satisfying cod(f) = dom(g),
– composition is associative: ∀(f, g, h) ∈ S1×S1×S1, (h ◦ g) ◦ f = h ◦ (g ◦ f)

⇐⇒ cod(f) = dom(g) ∧ cod(g) = dom(h), and
– composition satisfies unity: ∀(f : X → Y) ∈ S1, 1Y ◦ f = f = f ◦ 1X .

Remark 1. We say that a category is small if and only if it is internal in S .

To avoid set-theoretic issues related to the Russell-Zermelo paradox [27],
Category Theory defines a category of categories, Cat, where objects are small
categories and morphisms are functors. A functor is a structure-preserving map-
ping between two categories, which assigns the objects of one category to the
objects of another one. It also assigns the morphisms of one category to the mor-
phisms of the other. Functors preserve both identity morphisms and composition
of morphisms.

Definition 2 (Functor). A functor F : D → E assigns each object a ∈ D0 to
an object F (a) ∈ E0 and each morphism f ∈ D1 to a morphism F (f) ∈ E1 such
that:

– F (1a) = 1F (a) for each object a ∈ D0, and
– F (g ◦ f) = F (g) ◦ F (f) for all composable morphisms f, g ∈ D1.

Definition 3 (Natural Transformation). Let F,G : D → E be two functors
each from the category D to the category E . A natural transformation η : F → G
is a morphism between F and G, which satisfies the following:

– for every object a ∈ D0, there is a morphism ηa : F (a) → G(a) between ob-
jects of E , and

– for every morphism (f : a → b) ∈ D1, we have ηb ◦ F (f) = G(f) ◦ ηa.

Composition Machines 5

3.2 Quiver Foundations

The underlying structure of a category is typically represented as a quiver which
is a directed multigraph with loops allowed. The term quiver is used among
category theorists to avoid confusions derived from the multiple meanings of the
word graph. The formal definition of a quiver is presented below, along with
other related formalisms. Whenever convenient, we treat a function as a set of
relations.

Notation 1 (Walking Quiver Category) Let Q be the walking quiver cate-
gory consisting of a collection Q0 of vertices, a collection Q1 of arrows, a source
morphism s : Q1 → Q0 and a target morphism τ : Q1 → Q0.

Definition 4 (Quiver). A quiver Q is a functor Q → S . Intuitively, it is
a quadruple (Q0, Q1, s, τ) where Q0 is a set of vertices, Q1 is a set of arrows,
s : Q1 → Q0 is a source function and τ : Q1 → Q0 is a target function. If an
arrow α ∈ Q1 has source vertex x ∈ Q0 and target vertex y ∈ Q0, we say that α
is directed from x to y. This is denoted α : x → y with x = s(α) and y = τ(α).
We call Q finite if and only if the sets Q0 and Q1 are both finite.

Definition 5 (Subquiver). We say that Q′ = (Q′
0, Q

′
1, s

′, τ ′) is a subquiver of
Q = (Q0, Q1, s, τ), written Q′ ⊆ Q, if and only if Q′

0 ⊆ Q0, Q′
1 ⊆ Q1, s′ = s|Q′

1

and τ ′ = τ |Q′
1
.

Definition 6 (Non-Trivial Path). A non-trivial path ρ = (αn, αn−1, . . . , α1)
in a quiver Q is a finite sequence of arrows such that n ≥ 1 is the length of ρ,
αi ∈ Q1 for all i ∈ N ∩ [1, n] and τ(αj) = s(αj+1) for all j ∈ N ∩ [1, n − 1].
The source vertex of ρ is denoted by s(ρ) and the target vertex by τ(ρ) so that
s(ρ) = s(α1) and τ(ρ) = τ(αn) (clearly an abuse of notation but convenient).
By convention, all paths are read from right to left as in function composition,
and the same arrow can occur more than once in ρ.

Definition 7 (Trivial Path). A trivial path ρx in a quiver Q is just a vertex
x ∈ Q0. Its length is 0 and there are as many trivial paths as there are vertices
in Q0.

Definition 8 (Path Concatenation). Let ρ1 and ρ2 be two paths. We say that
ρ2 ∗ ρ1 is a new path, called a path concatenation, if and only if τ(ρ1) = s(ρ2).
Unambiguously, the source of ρ2 ∗ ρ1 is denoted by s(ρ2 ∗ ρ1) and its target by
τ(ρ2 ∗ ρ1) such that s(ρ2 ∗ ρ1) = s(ρ1) and τ(ρ2 ∗ ρ1) = τ(ρ2).

Definition 9 (Set of Paths). By convention, Qm is the set of paths of length
m ≥ 0 in a quiver Q, and Q∗ =

⋃
m∈N

Qm is the set of all the possible paths in Q.

Theorem 1 ([11]). Given a quiver Q, Q∗ is finite if and only if Q is finite and
has no oriented cycles.

Definition 10 (Path Category). The path category P (Q) on a quiver Q
consists of:

6 D. Arellanes

– a collection P (Q)0 whose objects are the vertices in Q0,
– a collection P (Q)1 whose morphisms are the paths in Q∗,
– a collection morphism s : P (Q)1 → P (Q)0 that maps each path ρ ∈ P (Q)1

to its source vertex s(ρ) ∈ P (Q)0,
– a collection morphism τ : P (Q)1 → P (Q)0 that maps each path ρ ∈ P (Q)1

to its target vertex τ(ρ) ∈ P (Q)0,
– a trivial path 1x ∈ P (Q)1 for every vertex x ∈ P (Q)0, called the identity of

x, and
– a path concatenation ρ2∗ρ1 ∈ P (Q)1 for every pair (ρ1, ρ2) ∈ P (Q)1×P (Q)1

satisfying τ(ρ1) = s(ρ2).

Remark 2. The category P (Q) is sound because:

– composition is associative: ∀(ρ1, ρ2, ρ3) ∈ P (Q)1×P (Q)1×P (Q)1, (ρ3 ∗ρ2)∗
ρ1 = ρ3 ∗ (ρ2 ∗ ρ1) ⇐⇒ τ(ρ1) = s(ρ2) ∧ τ(ρ2) = s(ρ3), and

– composition satisfies unity : ∀ρ ∈ P (Q)1, 1τ(ρ) ∗ ρ = ρ = ρ ∗ 1s(ρ).

Remark 3. Given a path category P (Q), the composition of two morphisms in
P (Q)1 is defined by the concatenation of two paths in Q∗, and an identity path
1x ∈ P (Q)1 corresponds to a trivial path ρx ∈ Q0. Also, every path ρ ∈ Q1 is
mapped to its one morphism in P (Q)1.

Theorem 2 ([9]). Let S Q be the category where objects are functors Q : Q → S
(i.e., quivers) and morphisms are natural transformations between such func-
tors. Then, there is a functor P : S Q → Cat that sends each quiver Q to its
corresponding path category P (Q), by taking each vertex x ∈ Q0 to an object
P (x) ∈ P (Q)0 and each path ρ ∈ Q∗ to a morphism P (ρ) ∈ P (Q)1.

4 Semantics of Composition and Program Spaces

In this section, we present the semantics of composition and program spaces for
the rest of the paper. For this, we introduce the notion of a computon which is
the fundamental unit of computation in our proposal.1 Informally, a computon
is a sequential program that produces exactly one output value for a given input
value via some finite computation. A value is an element of some set referred to
as data type.2 Formally:

Definition 11 (Data Type). A data type d is a set of values equipped with at
least one k-ary operation dk → d that can be performed on those values.
1 The word computon derives from the Latin root for computation (computus) and the

Greek suffix -on. In Physics, this suffix is traditionally used to designate subatomic
particle names.

2 Examples of data types include the set of integers and the set of real numbers [21,33].
A detailed overview of data types is out of the scope of this paper. This is because
the definition of type systems depends on the application domain.

Composition Machines 7

Definition 12 (Computon). A computon f : d1 → d2 is a function from an
input data type d1 to an output data type d2. We say that it is an identity compu-
ton if d1 = d2 and ∀v ∈ d1, f(v) = v. Otherwise, f is a non-identity computon.

Definition 13 (Composite Computon). A composite computon f2 ◦ f1 is
a higher-order function given by the composition of computons f1 and f2 where
cod(f1) = dom(f2).

Definition 14 (Computon Category). A computon category C consists of:

– a collection C0 of data types,
– a collection C1 of computons,
– a morphism in : C1 → C0 that takes each computon f ∈ C1 to an input data

type d ∈ C0,
– a morphism out : C1 → C0 that takes each computon f ∈ C1 to an output

data type d ∈ C0,
– a composite computon f2◦f1 ∈ C1 for every pair (f1, f2) ∈ C1×C1 satisfying

out(f1) = in(f2), and
– an identity computon 1d ∈ C1 for every data type d ∈ C0,

such that composition of computons:

– is associative: ∀(f3, f2, f1) ∈ C1 ×C1 ×C1, (f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1) ⇐⇒
out(f1) = in(f2) ∧ out(f2) = in(f3), and

– satisfies unity: ∀(f : d1 → d2) ∈ C1, 1d2 ◦ f = f = f ◦ 1d1 .

Definition 15 (Program Space). Given a subcategory C ′ of a computon cat-
egory C , let R : C ′ → S be an injective functor which takes each data type
d ∈ C ′

0 to its underlying set R(d) ∈ S0 and each computon f ∈ C ′
1 to a func-

tion R(f) ∈ S1. A program space is the subcategory R(C ′) of S , where R(C ′)
denotes the image of C ′ under R.

Intuitively, a program space R(C ′) on a computon category C ′ is a quadruple
(R(C ′)0, R(C ′)1, in, out) where R(C ′)0 is a set of data types, R(C ′)1 is a set
of computons, in : R(C ′)1 → R(C ′)0 is an input function and out : R(C ′)1 →
R(C ′)0 is an output function.

Definition 16 (Transformer). A transformer T : P (Q) → C is a functor for
presenting the path category on a quiver Q in a computon category C . It takes
the collection P (Q)0 of vertices to a collection C0 of data types and the collection
P (Q)1 of paths to a collection C1 of computons such that:

– there is an identity computon 1T (x) ∈ C1 for each vertex x ∈ P (Q)0 where
T (x) ∈ C0, and

– there is a composite computon T (ρn ∗ · · · ∗ ρ1) ∈ C1 for every path concate-
nation ρn ∗ . . . ∗ ρ1 ∈ P (Q)1 such that T (ρn ∗ · · · ∗ ρ1) = T (ρn) ◦ · · · ◦ T (ρ1)
with T (ρ1), . . . , T (ρn) ∈ C1.

8 D. Arellanes

Notation 2 (T ◦ P)(Q) denotes a computon category generated from the path
category on a quiver Q. Its collection of data types is denoted by (T ◦ P)(Q)0
and its collection of computons by (T ◦ P)(Q)1.

Definition 17. From Definitions 15 and 16, we can specify a composite functor
R ◦ T : P (Q) → S for transforming the path category on a quiver Q into its
corresponding program space (R ◦ T ◦ P)(Q). For short, we refer (R ◦ T ◦ P)(Q)
to as the program space on Q.

Example 1. This example is a walkthrough for the construction of the program
space (R ◦ T ◦ P)(Q) on the quiver Q = (Q0, Q1, s, τ). This quiver is illustrated
in Fig. 1 and is defined as follows:

– Q0 = {xi | i ∈ N ∩ [1, 8]},
– Q1 = {αi | i ∈ N ∩ [1, 6]},
– s = {(α1, x1), (α2, x2), (α3, x3), (α4, x1), (α5, x6), (α6, x7)}, and
– τ = {(α1, x2), (α2, x3), (α3, x4), (α4, x5), (α5, x7), (α6, x8)}.

x1 x2 x3
x4x5

x6
x7

x8

α1 α2 α3α4

α5 α6

Fig. 1: Graphical representation of the quiver Q described in Example 1.

Once the quiver Q has been defined, we can transform it into a compu-
ton category as follows. Let D = {di | i ∈ N ∩ [1, 8]} be a set of data types and
F = {fj | j ∈ N ∩ [1, 6]} be a set of computons with f1 : d1 → d2, f2 : d2 → d3,
f3 : d3 → d4, f4 : d1 → d5, f5 : d6 → d7 and f6 : d7 → d8. According to Defini-
tion 16, we can specify a transformer T to present P (Q) in a computon category
(T ◦P)(Q). We accomplish this by mapping each vertex P (xi) ∈ P (Q)0 to a data
type di ∈ D for all i ∈ N ∩ [1, 8] and each path P (αj) ∈ P (Q)1 of length one to
a computon fj ∈ F for all j ∈ N ∩ [1, 6]. Particularly, composite computons cor-
respond to path concatenations, and identity computons are trivial paths. This
construction is formally defined as follows:

– ∀i ∈ N∩[1, 8], xi ∈ Q0 =⇒ T (P (xi)) ∈ (T ◦P)(Q)0 such that P (xi) ∈ P (Q)0
and T (P (xi)) = di ∈ D,

– ∀i ∈ N ∩ [1, 8], xi ∈ Q0 =⇒ T (1P (xi)) : T (P (xi)) → T (P (xi)) such that
1P (xi) ∈ P (Q)1, T (1P (xi)) ∈ (T ◦ P)(Q)1, P (xi) ∈ P (Q)0, T (P (xi)) ∈ (T ◦
P)(Q)0 and T (P (xi)) = di ∈ D,

– ∀i ∈ N∩[1, 6], αi ∈ Q1 =⇒ T (P (αi)) ∈ (T◦P)(Q)1 such that P (αi) ∈ P (Q)1
and T (P (αi)) = fi ∈ F , and

– ∀(ρn ∗ · · · ∗ ρ1) ∈ P (Q)1, [T (ρn) ◦ · · · ◦ T (ρ1)] ∈ (T ◦ P)(Q)1.

Finally, the resulting computon category (T ◦ P)(Q) can be presented in
S via the functor R (see Definition 15). Intuitively, this is the program space
(R ◦ T ◦ P)(Q) = ((R ◦ T ◦ P)(Q)0, (R ◦ T ◦ P)(Q)1, in, out) where:

Composition Machines 9

– (R ◦ T ◦ P)(Q)0 = D,
– (R◦T◦P)(Q)1 = F∪{f2◦f1, f3◦f2, f3◦f2◦f1, f6◦f5, 1d1 , 1d2 , 1d3 , 1d4 , 1d5 , 1d6 ,

1d7 , 1d8} such that f2 ◦ f1 : d1 → d3, f3 ◦ f2 : d2 → d4, f3 ◦ f2 ◦ f1 : d1 → d4,
f6 ◦ f5 : d6 → d8 and 1di

: di → di for all i ∈ N ∩ [1, 8],
– in = {(f1, d1), (f2, d2), (f3, d3), (f4, d1), (f5, d6), (f6, d7), (f2 ◦ f1, d1),

(f3◦f2, d2), (f3◦f2◦f1, d1), (f6◦f5, d6), (1d1
, d1), (1d2

, d2), (1d3
, d3), (1d4

, d4),
(1d5 , d5), (1d6 , d6), (1d7 , d7), (1d8 , d8)}, and

– out = {(f1, d2), (f2, d3), (f3, d4), (f4, d5), (f5, d7), (f6, d8), (f2 ◦ f1, d3),
(f3◦f2, d4), (f3◦f2◦f1, d4), (f6◦f5, d8), (1d1

, d1), (1d2
, d2), (1d3

, d3), (1d4
, d4),

(1d5
, d5), (1d6

, d6), (1d7
, d7), (1d8

, d8)}.

The program space (R ◦ T ◦P)(Q) is illustrated in Fig. 2. Although we omit
identity computons for clarity, the above definition reveals that the identities are
elements of the set (R ◦ T ◦ P)(Q)1. Without loss of generality, hereafter we do
not show identity computons when depicting program spaces.

d1 d2 d3
d4d5

d6
d7

d8

f1 f2 f3f4

f5 f6

f2 ◦ f1

f3 ◦ f2 ◦ f1

f3 ◦ f2
f6 ◦ f5

Fig. 2: Graphical representation of the program space (R ◦ T ◦ P)(Q) described
in Example 1.

5 Composition Machines

We propose the notion of composition machines for the emergence of sequential
program spaces. These machines allow the definition and the execution of self-
organising software models [4], and represent a shift from the computation of
single programs to the emergence of program spaces.

Definition 18 (Composition Machine). A composition machine M is a sep-
tuple (D,F,Q, µ, S,N, δ) where:

– D is a non-empty finite set of data types,
– F is a non-empty finite set of computons such that ∀f, g ∈ F, cod(f) = cod(g)

⇐⇒ f = g and ∀f ∈ F, dom(f) ̸= cod(f),
– Q is an acyclic quiver where each vertex x ∈ Q0 represents a data type d ∈ D

and each arrow α ∈ Q1 (called an organism) represents a computon f ∈ F
such that ∀α1, α2 ∈ Q1, τ(α1) = τ(α2) ⇐⇒ α1 = α2 and ∀α ∈ Q1, s(α) ̸=
τ(α),

10 D. Arellanes

– µ consists of a pair of bijective functions, µ0 : Q0 → D and µ1 : Q1 → F ,
for mapping vertices to data types and organisms to computons, respectively,
such that µ1(α) = f ⇐⇒ µ0(s(α)) = dom(f) ∧ µ0(t(α)) = cod(f),

– S = {0, 1} is the set of possible organism states,
– N = {N1, N2, N3, N4} is a non-empty finite collection of neighbourhoods:

• N1 ⊆ Q1 is a set where each element (α) ∈ N1 is the unary neighbour-
hood of an isolated organism α ∈ Q1 that has has no neighbours to the
right and no neighbours to the left, i.e., ∀(α) ∈ N1,∄α0 ∈ Q1, τ(α0) =
s(α) ∨ τ(α) = s(α0).

• N2 ⊆ Q1 ×Q1 is a set where each element (α1, α2) ∈ N2 is the binary
neighbourhood of an organism α1 ∈ Q1 that has only one neighbour to the
right, i.e., ∀(α1, α2) ∈ N2, (∄α0 ∈ Q1, τ(α0) = s(α1)) ∧ τ(α1) = s(α2).

• N3 ⊆ Q1 ×Q1 is a set where each element (α1, α2) ∈ N3 is the binary
neighbourhood of an organism α2 ∈ Q1 that has only one neighbour to the
left, i.e., ∀(α1, α2) ∈ N3, (∄α0 ∈ Q1, τ(α2) = s(α0)) ∧ τ(α1) = s(α2).

• N4 ⊆ Q1 ×Q1 ×Q1 is a set where each element (α1, α2, α3) ∈ N4 is
the ternary neighbourhood of an organism α2 ∈ Q1 which has exactly
one neighbour to the right and exactly one neighbour to the left, i.e.,
∀(α1, α2, α3) ∈ N4, τ(α1) = s(α2) ∧ τ(α2) = s(α3).

– δ consists of four local state transition functions:
• δ1 : S → S for every α ∈ Q1 with a neighbourhood (α) ∈ N1,
• δ2 : S

2 → S for every α1 ∈ Q1 with a neighbourhood (α1, α2) ∈ N2,
• δ3 : S

2 → S for every α2 ∈ Q1 with a neighbourhood (α1, α2) ∈ N3, and
• δ4 : S

3 → S for every α2 ∈ Q1 with a neighbourhood (α1, α2, α3) ∈ N4.

Intuitively, a composition machine M = (D,F,Q, µ, S,N, δ) consists of |F |
organisms operating in discrete time.3 Each organism represents a computon
f ∈ F and has at most three neighbours (including itself). We say that two differ-
ent organisms α1 ∈ Q1 and α2 ∈ Q1 are neighbours if there is a non-trivial path
(α1, α2) or a non-trivial path (α2, α1). Equivalently, two different organisms are
neighbours if the computons they represent are composable (see Definition 13).

At each time step t ∈ N, an organism α ∈ Q1 is in a state c(α)t ∈ S. If
c(α)t = 1, we say that α is alive; otherwise, we say that α is dead (see Fig. 3).

x yα

(a) An alive organism.

x yα

(b) A dead organism.

Fig. 3: At time t, an organism α is (a) alive if c(α)t = 1 or (b) dead if c(α)t = 0.

The configuration of M at t is then a function c : Q1 → S that assigns a
state to each organism α ∈ Q1. Intuitively, it is a snapshot of all the states in
the system of organisms at some moment in time. Initially, at t = 0, M is in the
so-called initial configuration and, in subsequent steps, the states of its organisms
are updated in parallel according to four δ functions.

A δ function is a local update rule that defines the next state of an organism
based on the current state of n neighbours. More concretely, if the neighbours
3 As the function µ1 is bijective (see Definition 18), we have that |F | = |Q1|.

Composition Machines 11

of an organism have states c(α1)
t, c(α2)

t, . . . , c(αn)
t at t, then the state of that

organism at t+1 is given by δi(c(α1)
t, c(α2)

t, . . . , c(αn)
t) such that i ∈ N ∩ [1, 4]

and n ∈ N ∩ [1, 3]. Particularly, n = 1 for unary neighbourhoods, n = 2 for binary
neighbourhoods and n = 3 for ternary neighbourhoods.

Moreover, as an organism can be alive or dead, there are 21, 22 and 23

possible patterns for unary, binary and ternary neighbourhoods, respectively
(see Fig. 4). So, |dom(δ1)| = |S| = 2, |dom(δ2)| = |dom(δ3)| = |S|2 = 4 and
|dom(δ4)| = |S|3 = 8. Accordingly, there are 22 × 24 × 24 × 28 = 218 possible
rules for a composition machine.

(a) (b) (c)

Fig. 4: Possible patterns for (a) ternary neighbourhoods, (b) binary neighbour-
hoods and (c) unary neighbourhoods.

To explain how rules can be defined, let us consider a simple transition func-
tion for organisms that have only one neighbour to the right:

δ2(c(α1)
t, c(α2)

t) = c(α1)
t ⊕ c(α2)

t (1)

where ⊕ is the exclusive-or (XOR) operator defined in Boolean algebra.
Without loss of generality, let us assume (α1, α2) ∈ N2 is the binary neigh-

bourhood of some organism α1. If both organisms are alive at time t, then the
next state of α1 would be given by c(α1)

t+1 = δ2(1, 1) = 0, as shown in Fig. 5.

Fig. 5: An example of a local transition rule for an organism that has only one
neighbour to the right. This rule is equivalent to an XOR operation and corre-
sponds to the δ2 function described in Equation 1.

Fig. 5 shows an example of a local transition rule for the binary neigh-
bourhood N2 in some machine M . In a similar fashion, we can define rules for
the other neighbourhoods to independently transform organisms’ states. These
transformations occur by simultaneously applying the appropriate rule for each
α ∈ Q1, leading to a time evolution of the global configuration of M . Particu-
larly, evolving a configuration c into another one is given by a global transition
function G : SQ1 → SQ1 .4 So, the time evolution of M results from the repeated
application of G, i.e., c 7→ G(c) 7→ (G ◦G)(c) 7→ (G ◦G ◦G)(c) 7→ . . .

As c is the initial configuration, we can deduce that the machine’s orbit
orb(c) is equal to c,G(c), (G ◦G)(c), (G ◦G ◦G)(c), . . .5 In this case, time refers
4 SQ1 is the set of all the possible configurations in a given machine, i.e., the set of all

the functions from Q1 to S.
5 An orbit is a finite/infinite sequence of configurations of some composition machine.

12 D. Arellanes

to the number of applications of G. Particularly, the configuration c exists at time
t = 0, the configuration G(c) is present at time t = 1, the configuration (G◦G)(c)
appears at time t = 2, and so on. Indeed, the time evolution of a composition
machine is similar to that of a synchronous cellular automaton [1,20,36]. The
difference lies in their underlying semantics.

In a composition machine M , each organism α ∈ Q1 is causally related to
some computon f ∈ F via µ1. Furthermore, the global state of M at t is seman-
tically equivalent to a category which defines all the possible sequential composi-
tions at that moment in time. So, the machine’s purpose is not the computation
of a single program but the emergence of a whole program space. More formally,
a program space in M at t is generated from the path category P (

−→
Q t), where

−→
Q t is referred to as the alive quiver at t.

Definition 19 (Alive Quiver). Let M = (D,F,Q, µ, S,N, δ) be a composition
machine and c be a machine configuration at t. The alive quiver

−→
Q t ⊆ Q is a

quadruple (
−→
Q0,

−→
Q1,

−→s ,−→τ) where
−→
Q0 = {x ∈ Q0 | ∃α ∈ Q1, c(α)

t = 1 ∧ s(α) =

x ∨ τ(α) = x},
−→
Q1 = {α ∈ Q1 | c(α)t = 1}, −→s = {(α, s(α)) ∈ Q1 × Q0 |

c(α)t = 1}, and −→τ = {(α, τ(α)) ∈ Q1 ×Q0 | c(α)t = 1}.

The path category on an alive quiver
−→
Q t generates the space (R◦T ◦P)(

−→
Q t)

of all possible sequential computons at time t. As per Definition 17, this space
is produced through a computon category (T ◦ P)(

−→
Q t) which we refer to as the

alive category at t.

Definition 20 (Alive Category). Given a composition machine M = (D,F,

Q, µ, S,N, δ) and some alive quiver
−→
Q t = (

−→
Q0,

−→
Q1,

−→s ,−→τ), the alive category
(T ◦ P)(

−→
Q t) generated from P (

−→
Q t) consists of:

– a collection (T ◦ P)(
−→
Q t)0 of data types such that ∀x ∈ P (

−→
Q t)0,∃!d ∈ (T ◦

P)(
−→
Q t)0, d = µ0(x), and

– a collection (T ◦ P)(
−→
Q t)1 of computons where:

• ∀x ∈ P (
−→
Q t)0,∃!1d ∈ (T ◦ P)(

−→
Q t)1, d = µ0(x), and

• ∀(αn, . . . , α1) ∈ P (
−→
Q t)1,∃!(fn ◦ · · · ◦ f1) ∈ (T ◦ P)(

−→
Q t)1,

f1 = µ1(α1) ∧ · · · ∧ fn = µ1(αn) with n ≥ 1.

Theorem 3. Given a composition machine M = (D,F,Q, µ, S,N, δ), (R ◦ T ◦
P)(Q) is the maximal program space defining all the possible sequential programs
that can exist in M at any moment in time.

Proof. Let M = (D,F,Q, µ, S,N, δ) be a composition machine and
−→
Q t be some

alive quiver at time t. By Definition 19, we know that
−→
Q t ⊆ Q. Then, it trivially

follows that
−→
Q t = Q is the largest subset and, therefore, the maximal alive quiver

that can be formed at any moment in time. By Definition 17, we construct the
maximal program space (R ◦ T ◦ P)(Q) as required.

Composition Machines 13

A sequence of different program spaces can emerge periodically as a con-
sequence of an intermittent configuration pattern appearing in the system of
organisms. If a unique configuration pattern is repeated ad infinitum after time
t in a machine M , then we say that M halts at t (see Definitions 21 and 22).

Definition 21 (Configuration Pattern). A configuration pattern of period
k ≥ 1 is a finite orbit orb(c1) = c1, c2, . . . , ck where ci and ci+1 are different
configurations for all i ∈ N ∩ [1, k − 1].

Definition 22 (Composition Machine Halting). A composition machine
M halts at time t if and only if c1, c2, . . . , ck is a unique pattern appearing every
k time steps after t. Equivalently, M halts when a unique finite sequence of
distinct program spaces emerges every k time steps after t.

6 Example

We now present an example to demonstrate how (complex) sequential program
spaces emerge from simple rules. For this, we consider the composition machine
M = (D,F,Q, µ, S,N, δ) where:

– D = {di | i ∈ N ∩ [1, 13]},
– F = {fi : di → di+1 | i ∈ N∩[1, 6] ∧ di, di+1 ∈ D}∪{f7 : d8 → d9 | d8, d9 ∈ D}

∪ {fi : di+2 → di+3 | i ∈ N ∩ [8, 10] ∧ di+2, di+3 ∈ D},
– Q = (Q0, Q1, s, τ) where:

• Q0 = {xi | i ∈ N ∩ [1, 13]},
• Q1 = {αi | i ∈ N ∩ [1, 10]},
• s = {(αi, xi) | i ∈ N ∩ [1, 6]} ∪ {(α7, x8)} ∪ {(αi, xi+2) | i ∈ N ∩ [8, 10]},
• τ = {(αi, xi+1) | i ∈ N∩ [1, 6]}∪{(α7, x9)}∪{(αi, xi+3) | i ∈ N∩ [8, 10]},

– µ0 = {(xi, di) ∈ Q0 ×D | i ∈ N ∩ [1, 13]},
– µ1 = {(αi, fi) ∈ Q1 × F | i ∈ N ∩ [1, 10]},
– S = {0, 1},
– N = {N1, N2, N3, N4} with N1 = {(α7)}, N2 = {(α1, α2), (α8, α9)},

N3 = {(α5, α6), (α9, α10)} and N4 = {(α1, α2, α3), (α2, α3, α4), (α3, α4, α5),
(α4, α5, α6), (α8, α9, α10)},

– δ1 is the NOT function, δ2 and δ3 are XOR operations, and δ4 corresponds
to Rule 54 from elementary cellular automata. In its Boolean form, Rule 54
is equivalent to a function defined by (p, q, r) 7→ q ⊕ (p ∨ r) where (p, q, r) ∈
{0, 1} × {0, 1} × {0, 1} and q ⊕ (p ∨ r) ∈ {0, 1} (cf. [36]).

Fig. 6 illustrates the quiver Q and the maximal program space in M , viz.
(R◦T ◦P)(Q). According to Theorem 3, this space is the most complex that our
example machine can construct when all the organisms are alive. For simplicity,
we do not show the identity computons looping over each data type, and we do
not draw labels on composites to improve readability.

To arise familiarity, all the local transition functions of M are based on exist-
ing ones. Particularly, isolated organisms evolve through a NOT operation. Or-
ganisms with a binary neighbourhood change their states via the XOR operator.
And organisms with a ternary neighbourhood evolve according to Rule 54. Thus,
the orbit of M is given by the synchronous application of the rules illustrated in
Fig. 7, starting from the initial configuration c = {(α1, 1), (α2, 1), (α3, 0), (α4, 1),
(α5, 1), (α6, 0), (α7, 1), (α8, 0), (α9, 0), (α10, 1)}. This initial configuration and its
corresponding program space (R ◦ T ◦ P)(

−→
Q0) are illustrated in t = 0 of Fig. 8.

14 D. Arellanes

x1

x2
x3 x4 x5

x6

x7α1 α2
α3 α4 α5 α6

x8 x9
α7

x10
x11 x12

x13
α8 α9 α10

d1

d2
d3 d4 d5

d6

d7
f1 f2 f3 f4 f5 f6

d8 d9
f7

d10
d11 d12

d13
f8 f9 f10

Fig. 6: The quiver Q and the corresponding maximal program space in M .

(a) δ1 (b) δ2 and δ3 (c) δ4

Fig. 7: Unary neighbourhoods are associated with the NOT operator, binary
neighbourhoods with the XOR operator and ternary ones with Rule 54.

More precisely, Fig. 8 shows the orbit of M from t = 0 to t = 2, where it is
clear that the isolated organism α7 alternates its state via the NOT rule. Ac-
cordingly, the computon f7 emerges at even time steps and disappears at odd
ones. This figure also shows that there are are two, one and ten composite com-
putons in (R ◦ T ◦ P)(

−→
Q0)1, (R ◦ T ◦ P)(

−→
Q1)1 and (R ◦ T ◦ P)(

−→
Q2)1, respec-

tively. For example, f10 ◦ f9 is present in (R ◦ T ◦ P)(
−→
Q1)1 because c(α9)

1 = 1,
c(α10)

1 = 1, µ1(α9) = f9 and µ1(α10) = f10. Supposing f9 is a program of type
Z → R that multiplies an integer by 0.5 and f10 is a program of type R →
String that converts a real number into its equivalent string representation, then
f10 ◦ f9 : Z → String defines a (composite) sequential program that takes an in-
teger z and returns the string representation of z×0.5. This composite program
is not created manually by some coder, but it is automatically generated by M at
time t = 1. As the notion of a composition machine is implementation-agnostic,
in this paper we do not deal with concrete data types or concrete computons.
The example we consider is rather abstract with the aim of preserving generality.

In our example, organisms with a binary neighbourhood evolve via the XOR
rule. So, they are alive in the next time step if only one neighbour is alive in
the current time step. For example, α6 becomes alive at t = 1 because its left
neighbour α5 is alive at t = 0. But α1 is dead at t = 1 since c(α1)

0 = c(α2)
0 = 1.

Consequently, we have f6 ∈ (R ◦ T ◦ P)(
−→
Q1)1 and f1 /∈ (R ◦ T ◦ P)(

−→
Q1)1. More

concretely, the application of the XOR rule on binary neighbourhoods from t = 0
to t = 1 results in the following state transitions:

Composition Machines 15

c(α1)
1 = δ2(c(α1)

0, c(α2)
0) = 1⊕ 1 = 0

c(α8)
1 = δ2(c(α8)

0, c(α9)
0) = 0⊕ 0 = 0

c(α6)
1 = δ3(c(α5)

0, c(α6)
0) = 1⊕ 0 = 1

c(α10)
1 = δ3(c(α9)

0, c(α10)
0) = 0⊕ 1 = 1

Global Configuration Program Space
c

t=0

x1

x2
x3 x4 x5

x6

x7α1 α2
α3 α4 α5 α6

x8 x9
α7

x10
x11 x12

x13
α8 α9 α10

G(c)

t=1

x1

x2
x3 x4 x5

x6

x7α1 α2
α3 α4 α5 α6

x8 x9
α7

x10
x11 x12

x13
α8 α9 α10

(G ◦G)(c)

t=2

x1

x2
x3 x4 x5

x6

x7α1 α2
α3 α4 α5 α6

x8 x9
α7

x10
x11 x12

x13
α8 α9 α10

(R ◦ T ◦ P)(
−→
Q0)

d1

d2
d3 d4 d5

d6

f1 f2 f3
f4 f5

f6

d8 d9
f7

d12
d13f8 f9

f10

(R ◦ T ◦ P)(
−→
Q1)

d3 d4
d6

d7f1 f2
f3

f4 f5
f6

d11 d12
d13f8

f9 f10

(R ◦ T ◦ P)(
−→
Q2)

d2
d3 d4 d5

d6

d7f1
f2 f3 f4 f5 f6

d8 d9
f7

d10
d11

f8
f9 f10

Fig. 8: Orbit of M over three time steps via the rules described in Fig. 7.

Organisms with a ternary neighbourhood evolve according to Rule 54. For
instance, the organism α9 becomes alive at t = 1 since c(α8)

0 = c(α9)
0 = 0 and

c(α10)
0 = 1; thus, making available the computon f9 ∈ (R ◦ T ◦ P)(

−→
Q1)1. As

the organism α10 is also alive at that moment in time, the composite computon
f10 ◦ f9 ∈ (R ◦ T ◦ P)(

−→
Q1)1 emerges. In general, the application of Rule 54 on

ternary neighbourhoods from t = 0 to t = 1 results in the following transitions:

c(α2)
1 = δ4(c(α1)

0, c(α2)
0, c(α3)

0) = δ4(1, 1, 0) = 0

c(α3)
1 = δ4(c(α2)

0, c(α3)
0, c(α4)

0) = δ4(1, 0, 1) = 1

c(α4)
1 = δ4(c(α3)

0, c(α4)
0, c(α5)

0) = δ4(0, 1, 1) = 0

16 D. Arellanes

c(α5)
1 = δ4(c(α4)

0, c(α5)
0, c(α6)

0) = δ4(1, 1, 0) = 0

c(α9)
1 = δ4(c(α8)

0, c(α9)
0, c(α10)

0) = δ4(0, 0, 1) = 1

To further investigate the emergence of program spaces, we implemented our
composition machine M .6 After executing this example over 10000 time steps, we
found that the most complex program space is formed at t = 2, i.e., when all the
organisms in the path (α6, . . . , α2) become alive. Accordingly, f6◦f5◦f4◦f3◦f2 ∈
(R ◦ T ◦ P)(

−→
Q2)1 is the most complex composite computon (i.e., the largest

sequential program) in our example. With our tool, we also found that there is
a repeating pattern every four time steps, starting from t = 5, meaning that
the compositions formed before t = 5 are unique and, after that, there are only
four different program spaces. Such a repeating pattern indicates that M halts
at t = 4. Although we do not show it due to space constraints, the pattern is
depicted in [3]. In [3], we additionally present a more complex example.

7 Conclusions

In this paper, we introduced the notion of composition machines for the emer-
gence of sequential program spaces via self-organisation rules. A composition
machine evolves a quiver in discrete-time and its global state is semantically
equivalent to a category that defines a space of all the possible compositions
of computons at some instant. To demonstrate its operation, we presented an
example in which complex sequential program spaces emerge from simple rules.

As it is not trivial to engineer emergence, we plan to investigate novel mech-
anisms for defining rules that match contextual intention or high-level specifica-
tions. Also, we plan to study alternative neighbourhoods to allow the evolution
of cyclic quivers and, thus, the emergence of infinite categories. In this vein, we
would like to explore different program space patterns through the synchronous
application of varied local transition rules. In any case, Category Theory will be
the de facto reasoning framework. We believe that Category Theory will play
a fundamental role in the understanding of self-organisation and, in particular,
in the study of self-organising software models. This is because such a theory
follows an emergentist view rather than a reductionist one. So, the main focus
of Category Theory is not to study isolated abstract objects but the relevant in-
teractions between them and their composition. It is indeed a formal framework
to reasoning about compositionality and self-organisation.

This paper brings together these worlds in the form of an implementation-
independent abstract machine that allows the definition and the execution of
self-organising software models. The aim of this machine is not to compute sin-
gle programs, but to build programs (i.e., composite computons) from other
programs (i.e., predefined computons) via self-organisation rules. Under this um-
brella, we envision that in the future, instead of manually coding them, complex
software models could grow from simple rules (just as biological organisms do).

6 Our tool is available at https://github.com/damianarellanes/compositionmachine.

https://github.com/damianarellanes/compositionmachine

Composition Machines 17

References

1. Acerbi, L., Dennunzio, A., Formenti, E.: Conservation of some dynamical properties
for operations on cellular automata. Theoretical Computer Science 410(38), 3685–
3693 (2009)

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design. pp. 1–8 (2013)

3. Arellanes, D.: Composition Machines: Programming Self-Organising Soft-
ware Models for the Emergence of Sequential Program Spaces. Tech. Rep.
arXiv:2108.05402v1, arXiv (2021)

4. Arellanes, D.: Self-Organizing Software Models for the Internet of Things: Com-
plex Software Structures That Emerge Without a Central Controller. IEEE Sys-
tems, Man, and Cybernetics Magazine 7(3), 4–9 (2021). https://doi.org/10.1109/
MSMC.2021.3062822

5. Arellanes, D., Lau, K.K.: Workflow Variability for Autonomic IoT Systems. In: In-
ternational Conference on Autonomic Computing (ICAC). pp. 24–30. IEEE (2019)

6. Arellanes, D., Lau, K.K.: Evaluating IoT service composition mechanisms for the
scalability of IoT systems. Future Generation Computer Systems 108, 827–848
(2020)

7. Arellanes, D., Lau, K.K., Sakellariou, R.: Decentralized Data Flows for the Func-
tional Scalability of Service-Oriented IoT Systems. The Computer Journal 66(6),
1477–1506 (2023)

8. Arrighi, P., Dowek, G.: Causal graph dynamics. Information and Computation
223, 78–93 (2013)

9. Awodey, S.: Category Theory. Oxford University Press, New York, NY, USA, 2nd
edn. (2010)

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The FRAC-
TAL component model and its support in Java. Software: Practice and Experience
36(11-12), 1257–1284 (2006)

11. Derksen, H., Weyman, J.: An Introduction to Quiver Representations, Gradu-
ate studies in mathematics, vol. 184. American Mathematical Society, Providence,
Rhode Island, USA (2017)

12. Doty, D.: Theory of algorithmic self-assembly. Communications of the ACM 55(12),
78–88 (2012)

13. Filho, R.R., Porter, B.: Defining Emergent Software Using Continuous Self-
Assembly, Perception, and Learning. ACM Transactions on Autonomous and
Adaptive Systems 12(3), 16:1–16:25 (2017)

14. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

15. Gulwani, S., Polozov, O., Singh, R.: Program synthesis, Foundations and trends in
programming languages, vol. 4. Now Publishers, Hanover, MA Delft (2017)

16. Gurevich, Y.: On kolmogorov machines and related issues. In: Current Trends in
Theoretical Computer Science, World Scientific Series in Computer Science, vol. 40,
pp. 225–234. World Scientific (1993)

17. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for Software Architectures.
In: Gruhn, V., Oquendo, F. (eds.) Software Architecture. pp. 113–126. Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg (2006)

18. Iovino, M., Styrud, J., Falco, P., Smith, C.: Learning Behavior Trees with Genetic
Programming in Unpredictable Environments. In: IEEE International Conference
on Robotics and Automation (ICRA). pp. 4591–4597 (2021)

https://doi.org/10.1109/MSMC.2021.3062822
https://doi.org/10.1109/MSMC.2021.3062822
https://doi.org/10.1109/MSMC.2021.3062822
https://doi.org/10.1109/MSMC.2021.3062822

18 D. Arellanes

19. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ACM/IEEE International Conference on Software Engineering
(ICSE). pp. 215–224. ACM (2010)

20. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science
334(1-3), 3–33 (2005)

21. Lehmann, D.J., Smyth, M.B.: Algebraic specification of data types: A synthetic
approach. Mathematical systems theory 14(1), 97–139 (1981)

22. Mohr, F.: Automated Software and Service Composition: A Survey and Evaluating
Review. SpringerBriefs in Computer Science, Springer, Cham (2016)

23. Neumann, J.V.: Theory of Self-reproducing Automata. University of Illinois Press,
Urbana, Illinois (1966)

24. Pierce, B.C.: Basic Category Theory for Computer Scientists. Foundations of Com-
puting, MIT Press, Cambridge, MA, USA (1991)

25. Plump, D.: Term graph rewriting. In: Handbook of Graph Grammars and Com-
puting by Graph Transformation, pp. 3–61. World Scientific (1999)

26. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In:
Cardoso, J., Sheth, A. (eds.) Semantic Web Services and Web Process Composition.
pp. 43–54. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2005)

27. Russell, B.: The Principles of Mathematics, vol. 1. Cambridge: Cambridge Univer-
sity Press (1903)

28. Sayama, H.: Generative Network Automata: A Generalized Framework for Mod-
eling Complex Dynamical Systems with Autonomously Varying Topologies. In:
IEEE Symposium on Artificial Life. pp. 214–221 (2007)

29. Schönhage, A.: Storage Modification Machines. SIAM Journal on Computing 9(3),
490–508 (1980)

30. da Silva, A.S., Ma, H., Mei, Y., Zhang, M.: A Survey of Evolutionary Computa-
tion for Web Service Composition: A Technical Perspective. IEEE Transactions on
Emerging Topics in Computational Intelligence 4(4), 538–554 (2020)

31. Simon, H.A.: Whether software engineering needs to be artificially intelligent. IEEE
Transactions on Software Engineering SE-12(7), 726–732 (1986)

32. Smith, D.M.D., Onnela, J.P., Lee, C.F., Fricker, M.D., Johnson, N.F.: Network au-
tomata: coupling structure and function in dynamic networks. Advances in Com-
plex Systems 14(03), 317–339 (2011)

33. Spivak, D.I.: Functorial data migration. Information and Computation 217, 31–51
(2012)

34. Töpfer, M., Abdullah, M., Bureš, T., Hnětynka, P., Kruliš, M.: Machine-learning
abstractions for component-based self-optimizing systems. International Journal
on Software Tools for Technology Transfer 25(5), 717–731 (2023)

35. Waldegrave, R., Stepney, S., Trefzer, M.A.: Developmental Graph Cellular Au-
tomata. MIT Press (2023)

36. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL, USA, 1st
edition edn. (2002)

37. Woods, D.: Intrinsic universality and the computational power of self-assembly.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 373(2046), 1–13 (2015)

38. Yoon, Y., Lee, W., Yi, K.: Inductive Program Synthesis via Iterative Forward-
Backward Abstract Interpretation. Proceedings of the ACM on Programming Lan-
guages 7(174), 1657–1681 (2023)

	Composition Machines: Programming Self-Organising Software Models for the Emergence of Sequential Program Spaces

