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ABSTRACT
The Internet of Things (IoT) is an emerging paradigmwhere practically every (physical and virtual) thing
will be interconnected through innovative distributed services. Since the number of connected things is
rapidly growing, IoT systems will require the composition of plenty of services into complex workflows.
Thus, scalability in terms of the size of IoT systems becomes a significant concern. In this paper, we
review and evaluate the fundamental semantics of existing IoT service composition mechanisms to
determine how well they fulfil the scalability requirements of IoT systems. We identify scalability
desiderata and, accordingly, our findings show that dataflows, orchestration and choreography do not
fully satisfy such desiderata, unlike a novel composition mechanism called DX-MAN.

1. Introduction
The Internet of Things (IoT) is an emerging paradigm that

promises the interconnection of (physical and virtual) things
through innovative distributed services. Like traditional en-
terprise services, IoT services interact in many different ways
via the Internet, in order to realise a global system workflow.
However, unlike traditional enterprise systems, IoT systems
will require the interaction of billions of services as the num-
ber of connected things (and therefore services) is rapidly
growing [1, 2]. Thus, scalability becomes a crucial concern.

Scalability is typically considered as a system capability
to handle increasing workloads [3, 4, 5, 6, 7, 8]. In particular,
vertical scalability [9, 10, 11] refers to the addition or removal
of computing resources in a single IoT node, while horizontal
scalability [2, 12, 13] involves the addition or removal of IoT
nodes. These kinds of scalability have been addressed by
an extensive body of research [4, 10, 11, 14, 15, 16, 17, 18,
19, 20], unlike scalability in terms of the number of services
composed in an IoT system, which we refer to as functional
scalability.

Existing service composition mechanisms were primarily
designed for the integration of static enterprise services, not
for the physical world. For that reason, they may not address
the functional scalability challenges that IoT systems pose.
Early IoT systems were deployed in closed environments,
using private Application Programming Interfaces (APIs) and
private data. However, future IoT systems will be deployed
in open environments (also known as software ecosystems
[21]) with an overwhelming number of available services, as
a result of the huge number of connected things [22]. For
that reason, billions of IoT services will be composed into
complex IoT systems [23, 24, 25, 26, 27, 28]. This raises
the challenging question of How to construct IoT systems
composed of an ultra-large number of services?

In this paper, we study the ability of service composition
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mechanisms to handle any number of IoT services. Our aim
is to determine which service composition mechanism best
fulfils the functional scalability requirements of IoT systems.
To answer this, we have reviewed the fundamental seman-
tics (not specific implementation technologies) of existing
composition mechanisms, and proposed an evaluation frame-
work that considers six crucial desiderata: (i) explicit control
flow [29, 30]; (ii) distributed workflows [23, 31, 32]; (iii)
location transparency [20, 33]; (iv) decentralised data flows
[23, 32, 34]; (v) separation of control, data and computation
[35, 36, 37, 38]; and (vi) workflow variability [23, 39, 40, 41].
Our evaluation framework serves as a guideline for defining
the semantics of future IoT service composition mechanisms.

The remainder of the paper is structured as follows. In
the next section, we present an overview of IoT services,
scalability and service composition. Section 3 outlines the
related work on IoT service composition mechanisms. Sec-
tion 4 introduces a motivating IoT scenario based on a smart
parking system. The scenario is then considered in Section
5 to comprehensively describe the requirements for func-
tional scalability and the rationale behind them. Section 6
analyses service composition mechanisms on the basis of
the functional scalability requirements. Section 7 presents
an evaluation that determines how well service composition
mechanisms fulfil the scalability requirements. Our findings
are then discussed in Section 8. Finally, Section 9 draws the
conclusions and presents the directions for future research.

2. Background
This section presents a background for the rest of the

paper, which includes an overview of IoT services, service
composition and scalability.
2.1. IoT Services

Kevin Ashton coined the term Internet of Things (IoT)
in a presentation made in 1999 at Procter and Gamble [42],
referring to the interconnection of everything via the Internet
for the creation of an ubiquitous computing environment [43].
As per the recommendation of ITU-T Y.4000, IoT has been
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recently redefined as “a global infrastructure for the informa-
tion society, enabling advanced services by interconnecting
(physical and virtual) things based on existing and evolving
interoperable information and communication technologies”
[44].

A thing is practically a physical or virtual construct of
the real-world, which is capable of being identified and in-
tegrated into communication networks through specific pro-
tocols. The difference between physical and virtual things
lies in their tangibility [45]. A physical thing is a tangible
object of the physical world, which is capable of being sensed,
actuated and connected, e.g., home appliances, robots, build-
ings, plants and people. Contrastingly, a virtual thing is a
non-tangible construct formed from a human idea which only
exists in the information world, e.g., Clouds and enterprises.

The broad range of available things inevitably requires
dealing with a high degree of heterogeneity in a distributed
environment. Accordingly, a Service-Oriented Architecture
(SOA) represents the best way of dealing with this issue [46].
It is a logical way of designing a software system to provide
services either to end-user applications or other services
distributed in a network, via published and discoverable in-
terfaces [47]. Thus, it is expected that physical and virtual
things will provide services to expose behaviour via interfaces
[5, 48, 49, 50, 51, 52].

According to the Oxford dictionary, the word service
can be a noun or a verb referring to the action of helping or
doing work for someone. Considering a service as a noun
allows the encapsulation of behaviour (i.e., actions) in the
form of operations described as verbs. Thus, a software
service is a distributed software component that provides
a set of operations through network-accessible endpoints
[53, 54]. In general, IoT services are virtual representations
of the behaviour of things, which can be combined with other
services into more complex behaviours to yield complex
service-oriented IoT systems [52, 55, 56, 57]. Thus, things
are integrated through the composition of the services they
provide (see Section 2.2).

Resource-constrained things (e.g., pulse sensors) typi-
cally provide fine-grained services for basic functionality
(e.g., fetching sensor data), whilst non-resource constrained
things (e.g., a Cloud) may offer coarse-grained services in
addition (e.g., services for geolocation or complex industrial
processes). Enterprise services are typically coarse-grained
as they are deployed on resource-rich infrastructures, whilst
services of physical things are often fine-grained because
they are usually deployed on resource-constrained things.

Figure 1 shows the relationship between things, services
and operations. Figure 1(a) depicts a washing machine (i.e., a
resource-constrained physical thing) that offers the Washing
and Drying fine-grained services with two operations each
(for starting and stopping the respective processes). Figure
1(b) shows a City Council Cloud (i.e., a non-resource con-
strained virtual thing) that offers the services CouncilTax and
Parking. The CouncilTax service provides the operations pay
(to pay a tax bill) and check (to query council tax informa-
tion). The Parking service offers the operations getNearest

(for getting the closest parking space from a driver’s location)
and registerDisabled (for registering an impaired driver).
Washing Machine

Thing

IoT Service

Washing

Drying

City Council Cloud

CouncilTax

Parking

start
stop

start
stop

pay

check

getNearest
registerDisabled

Operation

Figure 1: Relationship between things, IoT services and opera-
tions.

For the rest of the paper, we use the notation S.O to denote
an operation O in service S, e.g., Parking.getNearest refers
to the getNearest operation provided by the Parking service.
2.2. IoT Service Composition Revisited

An IoT service is a distributed unit of composition,
which constitutes the virtual representation of a thing’s be-
haviour, and can be either atomic or composite. An atomic
service is a well-defined and self-contained piece of be-
haviour that cannot be divided into other services [58, 59, 60].
A composite service, on the other hand, is a more com-
plex unit that provides value-added functionality and is
formed by the combination of (atomic or composite) ser-
vices [52, 55, 57, 58, 59, 61, 62]. For example, a humidity
sensing service can be combined with a temperature service
into an air conditioning composite [63].

The ability of combining services is referred to as com-
positionality and is realised by a composition mechanism
[59]. Thus, an IoT system requires a things infrastructure, the
definition of what a service is and the selection of a composi-
tion mechanism [64]. In any scenario, composition is done
regardless of both the technologies being used and the things
infrastructure. Service technologies include REST [65, 66],
WS-* [67, 68], OSGi [69, 70] and many others.1

A service composition mechanism defines a meaning-
ful interaction between services [59] by considering two
functional dimensions: control flow and data flow [71, 72].
Control flow refers to the order in which interactions oc-
cur [73, 74], whilst data flow defines how data is moved
among services [71]. In this paper, we focus on service com-
position mechanisms that define behaviour by workflows,
namely (centralised and distributed) dataflows, (centralised
and distributed) orchestration, choreography, and a novel
composition mechanism called DX-MAN. Section 6 provides
a detailed description of these mechanisms.

A workflow describes a series of discrete steps for the
realisation of a computational activity, which can be control-
driven, data-driven or hybrid [75]. In a control-driven work-
flow, steps (also known as tasks [76], actors [77], transitions
[78], procedures [79], thorns [80], activities [81] and units
[82]) are executed according to explicit control flow con-
structs that define sequencing, looping, branching or paral-
lelising. A data-driven workflow invokes steps whenever

1In RESTful services, operations are exposed as resources [65].

D. Arellanes and K.-K. Lau: Preprint submitted to Elsevier Page 2 of 26



Evaluating IoT Service Composition Mechanisms for the Scalability of IoT Systems

data becomes available without explicitly defining any con-
trol flow constructs [83]. In a hybrid workflow, some parts
are control-driven, while others are data-driven [82]. Figure 2
illustrates a generic workflow that executes the operation op1,then decides to invoke either op2 or op3 and, finally, triggersthe operations op4 and op5 in parallel. Operation invocations
happen regardless of the workflow kind.

Figure 2: A generic workflow.

Workflows are increasingly important for IoT systems be-
cause they allow the integration of IoT services into complex
tasks that automate a specific context [84, 85, 86, 87, 88].
For example, a smart home can be automated with a work-
flow that regulates the temperature of a room according to
environmental changes. In the domain of smart agriculture, a
workflow can be defined to analyse data coming from harvest
sensors, predict diseases and react accordingly.
2.3. Scalability of IoT Systems

With the advent of hardware technologies, the number of
IoT services is rapidly growing due to the excessive increase
in the number of connected things. Currently, there are about
19 billion connected things, and it is predicted that this num-
ber will grow exponentially in the coming years [1, 2]. Thus,
unlike traditional enterprise systems, scalability becomes a
crucial concern for the full realisation of IoT systems.

Typically, scalability is the capability to handle increasing
workloads in a IoT system [3, 4, 5, 6, 7, 8]. In this case, it is a
metric that indicates how system performance improves over
time. Workloads are typically measured in terms of either
the number of requests dispatched [3] or the data streams
generated [7]. The overall goal of scalable solutions is to en-
hance the Quality of Service (QoS) for guaranteeing a certain
level of performance under the presence of high workloads,
e.g., by minimising bandwidth, energy, latency and response
time while maximising throughput. To quantitatively mea-
sure QoS, several network aspects of a service are considered
such as jitter, throughput, packet loss and availability [8].

Currently, there are two kinds of scalability: vertical and
horizontal.2 Vertical scalability (or scaling up) [9, 10, 11]
refers to the addition or removal of computing resources in a
single thing, e.g., adding more memory to increase buffer size
or addingmore processor capacity to speed up processing. On
the other hand, horizontal scalability (or scaling out) [2, 12,
13] involves the addition or removal of things in an IoT system.
Its goal is to distribute the workload over multiple things
to decrease individual loads, minimise response time and

2IoT cloud environments benefit from dynamically scaling vertically,
horizontally or both.

enhance concurrency. Figure 3 depicts the contrast between
vertical and horizontal scalability.

Thing

IoT Service

Hardware Resource

Thing Thing Thing

Thing

Service

Service

Service

a) Vertical Scalability b) Horizontal Scalability

c) Functional Scalability

Figure 3: Scalability of IoT systems.

Both vertical and horizontal scalability have been exten-
sively addressed in the literature [4, 10, 11, 14, 15, 16, 17, 18,
19, 20], unlike functional scalability which we refer to as the
capability to accommodate growth in terms of the number
of services composed in an IoT system (see Figure 3(c)). In
particular, it enables the composition of any number of ser-
vices, without severely impacting global system properties
such as performance, maintenance, evolution and monitoring.
Hence, functional scalability is crucial for dealing with IoT
systems composed of billions of services. Figure 4 shows
that it is orthogonal to vertical and horizontal scalability.

Vertical

Scalability

Horizontal Scalability

Functional

Scalability

Figure 4: Scalability dimensions.

Like the other kinds of scalability, functional scalability
requires the definition of metrics to measure the degree of sat-
isfaction for accommodating new services. In this paper, we
propose six qualitative metrics which we discuss in Section 5.
We do not claim that such metrics are complete since quanti-
tative metrics for QoS, identified for vertical and horizontal
scalability, can also be important. However, quantitative
metrics are only applicable to specific implementations. As
service composition is an abstraction rather than a concrete
implementation, we strongly argue that qualitative metrics
are the best ones to measure the degree of satisfaction of
functional scalability in service composition mechanisms.
For the rest of the paper, the terms scalability and functional
scalability are used interchangeably.
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3. Related Work
This section presents the current IoT service composi-

tion mechanisms that define behaviour by workflows, namely
(centralised and distributed) dataflows, (centralised and dis-
tributed) orchestration, choreography, and a novel compo-
sition mechanism called DX-MAN. We particularly focus
on the fundamental semantics of these mechanisms instead
of addressing specific implementation technologies. This
is because semantics constitutes general theory that defines
how to compose services conceptually rather than a con-
crete implementation (that can only be evaluated in specific
scenarios). Significantly, fundamental semantics underlies
so-called composition algorithms [8, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102], programming frameworks
[84, 103, 104, 105, 106, 107, 108], languages [109, 110] and
platforms [111, 112, 113, 114, 115, 116, 117], which have
been somehow confusingly included in existing “IoT service
composition” surveys [3, 5, 24, 118, 119].

It is also essential to mention that IoT service composi-
tion is just another name for traditional SOA composition
and it is done regardless of so-called service “architectures”
such as the ones defined for Microservices. Microservice
Architecture [120, 121, 122] has gained considerable atten-
tion in the last few years and is becoming increasingly im-
portant and popular for the development of IoT systems
[123, 124, 125, 126, 127]. Every Microservice Architecture
is an SOA, but not the other way round [128]. Hence, the ser-
vice composition mechanisms presented in this sub-section
can be used interchangeably in both Microservices and tra-
ditional SOA services. In fact, there are no composition
mechanisms specifically aimed for Microservices.

Dataflows, or Flow-Based Programming [129, 130, 131],
is a composition mechanism that defines implicit workflows
as directed graphs where vertices receive input data streams,
carry out some computation and pass the result to other ver-
tices via an edge for further processing [71, 132]. A cen-
tralised approach [83, 116] fully coordinates the exchange
of data streams exogenously (i.e., from outside services),
whereas a distributed one [37, 38, 133, 134] partitions a com-
plexworkflow dataflow overmultiple coordinators. Currently,
dataflows is the most popular IoT service composition mecha-
nism, so there are plenty of available technologies for defining
data-driven IoT workflows [83, 126, 135].

Orchestration defines explicit workflow control flow struc-
tures to coordinate the invocation of service operations ex-
ogenously and, like dataflows, it can be centralised or dis-
tributed. A centralised orchestration [72, 136, 137, 138] has
full control over all the services composed, whereas a dis-
tributed approach (also known as “decentralised orchestra-
tion” [139, 140, 141, 142, 143, 144, 145, 146, 147, 148])
defines sub-workflows for a collaborative exchange of work-
flow control flow over the network. Although orchestration
is not as popular as dataflows, there are some implementa-
tions available for this mechanism to support the definition
of control-driven IoT workflows [149, 150, 151].

Choreography [136, 137, 138, 152, 153] is another com-
position mechanism that defines workflow control flows for

the invocation of operations in services. Unlike orchestra-
tion, it relies on a public protocol which specifies a global
“service conversation” via decentralised interactions, and
it is modelled using a choreography modelling language
[122, 138, 153]. When a choreography is enacted, the com-
posed services exchange control according to the protocol
to realise decentralised workflows. It is because of this de-
centralised nature that there is an increasing trend of im-
plementing technologies for choreographing IoT services
[154, 155, 156]. Notably, some of these technologies (e.g.,
[155]) implement choreographies based on the data-driven
paradigm with no notion of public protocols, which do not
define any composite service but a bunch of interactions via
events or decentralised message passing. So, they do not
follow the standard definition as noted by [35].

DX-MAN [157, 158, 159] is a model that uses exogenous
composition operators [160, 161] to algebraically compose
IoT services in a hierarchical bottom-up manner. The result
of composition is not a workflow, but an IoT composite ser-
vice which is semantically equivalent to a potentially infinite
family of (explicit) workflow control flows. As DX-MAN
takes the best properties from choreography and orchestra-
tion, it enables decentralised data exchanges over the network
while decoupling services via (exogenous) workflow control
flows [162]. Currently, there is only one platform available
to support the definition of algebraic IoT systems [163].

To continue the discussion, Section 6 describes the above
composition mechanisms in detail and presents a concrete
analysis in terms of functional scalability requirements.

4. A Large-Scale IoT Scenario: Smart
Parking System (SPark)
To illustrate the context for scalability requirements, this

section presents a large-scale IoT scenario in the smart park-
ing domain. The scenario tackles a common problem of large
cities and is described as follows.

With the increase of population, large cities have had to
deal with daily traffic congestion caused by drivers actively
searching for parking spaces, especially during rush hours.
As a consequence, there are increased carbon emissions as
well as waste of commuters’ time and money [164, 165]. This
section presents a large-scale smart parking system, SPark,
for self-driving vehicles which efficiently find (and reserve)
the nearest parking space in a smart city. SPark thus helps
to improve parking space utilisation, shorten parking search
time, reduce environmental pollution, minimise parking costs
and fuel consumption, and alleviate traffic congestion [164].

SPark operates in a smart city with plenty of parking
spaces equipped with occupancy sensors whose data is man-
aged by Infostations. Although it is an urban infrastructure
device able to collect up-to-date occupancy status from all
sensors in range, an infostation only pulls data from the sen-
sors near a vehicle. Figure 4 illustrates SPark with four self-
driving cars, where a vehicle gets its location and requests a
parking space from the nearest Infostation. The InfoStation
then pulls data from the nearby sensors to determine the near-
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pullStatesSensor
Network

Booking

Figure 6: SPark services.

est parking space that is free. To avoid two different vehicles
chasing the same parking space, the space is reserved and
paid for in advance. Finally, the vehicle displays the desired
route and drives towards the selected parking space. Figure
5 depicts the general workflow of SPark.
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Figure 4: A smart city with SPark.
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Figure 5: SPark workflow.

To achieve its goal, SPark composes a huge amount of IoT
services distributed across a city. It is then an ultra large-scale
system [23, 24, 25, 26] because sub-systems (i.e., services)
may potentially integrate other sub-systems (i.e., services)
and so on. Figure 6 depicts the relationship between services
and sub-services in SPark. We distinguish between atomic
services and composite services. An atomic service is the
most primitive unit with no internal structure, whilst com-
posite services integrate sub-services and can be integrated
into even more complex composites.

To hide complexity and protect behaviour integrity, we as-
sume that the composite services of our example are encapsu-
lated. As IoT composite services potentially reside on differ-

ent business domains [166], SPark cannot be “decomposed”
using a top-down approach, but it should be composed in a
bottom-up fashion by reusing existing compositions [27, 31].
Figure 6 shows the resulting hierarchical service relationship.

Note that ellipses indicate that services may provide mul-
tiple operations or compose many other services. Also note
that, in practice, atomic services can be defined as compos-
ite services. For example, DrivingCtr could be a complex
service that integrates services for planning a path and con-
trolling a vehicle. As another example, the Display service
may internally use a web mapping service and a visualisa-
tion service for displaying a route. An alternative (larger)
view of SPark can be found in Appendix A. For clarity, this
section only shows a simplified version of SPark which is
incrementally described below.

The SensorNetwork composite is a wireless network that
composes a group of dedicated atomic Sensor services. It pro-
vides the SensorNetwork.pullStates operation as an interface
for collecting parking space status in parallel. The collection
is done by invoking the Sensor.pullState operations from the
sensors near the vehicle.

The CityManagement composite service composes mul-
tiple SensorNetwork composites and one atomic Booking
service. It provides the CityManagement.getParking oper-
ation for finding and reserving the best (i.e., the free and
nearest) parking space. To do so, it collects sensor states
with the SensorNetwork.pullStates operation, and then deter-
mines which parking spaces are free. Finally, it reserves the
nearest free parking space using the Booking.book operation.

The Payment composite is an online electronic payment
service that composes two payment providers: Provider1 and
Provider2. It chooses which payment method to use when
the operation Payment.pay is invoked. On the one hand,
Provider1 is an atomic service with the operations payVisa
and payMaster (for paying with Visa or Mastercard). On the
other hand, Provider2 is an atomic service with the operation
payWallet (for paying with an eWallet).

The Vehicle composite encompasses two different be-
haviours, and composes the atomic services GPS, Display
andDrivingCtr. The Vehicle.getCurrentLocation operation is
an interface for the behaviour ofGPS.getLocation, which gets
geospatial positioning information. The Vehicle.driveVehicle
operation is more complex, as it invokes Display.showMap
so as to plan, compute and visualise the route on the vehicle’s
display. Then, it executes DrivingCtr.drive to autonomously
drive the vehicle towards the desired parking space.
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SPark is the most complex composite service, since it
composes the services CityManagement, Payment and Ve-
hicle, and provides the SPark.findBestParking operation for
the encapsulation of the whole system’s behaviour. The be-
haviour is a workflow for the sequential invocation of Vehi-
cle.getCurrentLocation, CityManagement.getParking, Pay-
ment.pay and Vehicle.driveVehicle. Appendix B describes
the complete workflow of our scenario.

As the SPark workflow spans multiple administrative
domains, our motivating example requires the distribution
of services across different geographical locations. Table
1 shows a possible physical deployment configuration. In
particular, CityCouncilCloud is a virtual thing where ser-
vices CityManagement, Payment and Booking are deployed.
ParkingSpace is a physical thing whose occupancy status is
provided by the Sensor service. Infostation is a physical thing
that collects data from sensors within a wireless range, via
the SensorNetwork service. ProviderServer1 and Provider-
Server2 are physical things of different payment provider
companies, where services Provider1 and Provider2 are de-
ployed. Vehicle is a physical thing that moves around the city,
searching for a parking space, which provides the services
SPark, Vehicle, GPS, Display and DrivingCtr. Note that de-
ploying a composite service (e.g., SPark) does not necessarily
mean that the composed services should be deployed on the
same thing. This is because IoT services operate on different
administrative domains.

Thing Composite
Services

Atomic
Services

CityCouncilCloud CityManagement,
Payment

Booking

ParkingSpace Sensor

ProviderServer1 Provider1

ProviderServer2 Provider2

Vehicle GPS,Display, DrivingCtrSPark, Vehicle

Infostation SensorNetwork

Table 1
SPark service distribution.

5. Functional Scalability Requirements
This section presents the functional scalability require-

ments of IoT systems in terms of SPark. These requirements
were derived from an extensive review of the literature on
large-scale IoT systems and serve as the foundation of our
evaluation framework. The requirements are: (i) explicit con-
trol flow [29, 30]; (ii) distributed workflows [23, 31, 32]; (iii)
location transparency [20, 33]; (iv) decentralised data flows
[23, 32, 34]; (v) separation of control, data and computation
[35, 36, 37, 38]; and (vi) workflow variability [23, 39, 40, 41].
5.1. Explicit Control Flow

Control flow defines the execution order of composed ser-
vices [71], according to sequencing, branching or parallelis-
ing constructs [75]. It is explicit when there is a visible con-
struct defining control flow in a service composition, whilst it
is implicit when it needs to be inferred from the collaborative

interaction of the composed services [71, 74, 138].3 Figure
7 describes the difference between such concepts. The left
side depicts visible constructs for the sequential execution
of A.opA1 and B.opB1. Contrastingly, the right side does notshow any control flow constructs, as the workflow logic is
hardcoded in the computation of the composed services.

A.op

A

opA1

B

opB1

A1 B.opB1

A

opA1

B

opB1

Explicit Control FlowIoT Atomic Service Operation

a) Explicit Control Flow b) Implicit Control Flow

Implicit Control Flow Workflow Start Workflow Termination

Figure 7: Explicit control flow vs implicit control flow.

The number of composed services may become over-
whelmingly large because of both the huge number of things
involved and the complexity of workflow control flow. Con-
sequently, execution failures become unavoidable, more chal-
lenging to manage and may potentially unleash catastrophic
consequences (for individuals or societies) [167]. For that
reason, explicit control flow becomes crucial to tackle func-
tional scalability, since it facilitates monitoring, tracking,
verification, maintenance and evolution of large-scale IoT
composite services [29, 30, 122, 168, 169]. For instance, we
can leverage explicit control flow to detect abnormalities in
a SPark execution [170, 171, 172], or we could easily ob-
fuscate workflow control flow in order to avoid malicious
reverse-engineering [173, 174].

Imagine that SPark suddenly stops working because of
a bottleneck in some service, so developers want to analyse
the system execution flow to find out where the problem is.
For this, they can leverage explicit control flow to display a
visual representation of the execution paths that SPark has
taken [29, 74, 175, 176]. By looking at the blueprint, devel-
opers can identify the services that perform poorly and react
accordingly.

Implicit control flow has historically been a barrier for
functional scalability since it hinders control flow visual-
isation, especially when the number of services increases
[29, 30, 121, 122, 177, 178]. Although there are attempts to
visualise control flow [178, 179, 180, 181, 182], transforming
implicit control flow into an explicit one is still a challenging
task, especially when the system workflow is complex. This
issue has made software development companies stop com-
posing services with implicit control flow. Netflix [183] is
the most prominent case, which has particularly expressed its
concern for monitoring composite service executions when
control flow is implicit. To tackle this, it has recently de-
veloped Conductor [29] to move from compositions with
implicit control to compositions with explicit control.

3For example, control flow is explicit in imperative languages and
implicit in declarative ones.
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5.2. Location Transparency
Large-scale IoT systems are inherently dynamic and un-

certain due to the presence of churn in the operating envi-
ronment [20, 25, 27, 33, 184, 185, 186]. Churn means that
things (and their services) dynamically connect and discon-
nect from the network as a result of auto-scaling, software
upgrades, failures, poor connection and mobility. It is partic-
ularly evident when an IoT system uses resource-constrained
things with a poor connection [187], or when there are mobile
things involved [185, 188]. Hence, churn results in physi-
cal service locations (i.e., IP addresses) changing over time
frequently. For example, the Spark’s Sensor service is a
resource-constrained thing with limited connectivity, which
is likely to experience network disconnections. Similarly, the
service Vehicle may change its IP address because of its high
mobility. The same happens to Provider1, Provider2 and
Booking as they are deployed on the Cloud.

To deal with churn, IoT systems require location trans-
parency, in order to ensure that atomic services are unaware
of the physical location of other services [74]. Figure 8 illus-
trates this concept. In particular, the lower section shows that
the (non-static) IP address of B.opB1 is hardcoded in A.opA1.The upper section shows a scenario where there is support
for location transparency.

a) With Location Transparency

A

opA1

87.60.14.2

69.17.45.8

B

opB1

69.17.45.8

A

opA1

87.60.14.2

B

opB1

69.17.45.8

b) Without Location Transparency

IoT Atomic 
Service

Operation

Thing

Figure 8: Location Transparency.

Location transparency is typically achieved with a service
discovery mechanism that dynamically queries a central ser-
vice registry [52]. In client-side discovery, service providers
register at startup in a registry which is later queried by ser-
vice consumers. In server-side discovery, a router (e.g., a
service bus like a gateway [112]) queries the registry and
forwards requests to an available service provider on behalf
of service consumers.

A service composition with no location transparency re-
quires service consumers to know the location of service
providers in advance. For example, without any support for
location transparency, SPark would have to be updated every
time a Vehicle changes location. Nonetheless, this is worry-
ing because there is a massive number of vehicles constantly
moving around a city and, therefore, changing location. Ad-
dressing this issue with a service discoverymechanism entails
the addition of “intrusive” elements to the composition (e.g.,
a service registry or a naming service) which are not part
of the semantics of a composition mechanism. In fact, an
atomic service computation would be tightly coupled with

the “intrusive” element, since the former needs to be updated
whenever the location of the latter changes. We shall keep
this in mind in Section 6.
5.3. Distributed Workflows

IoT service composition can define a centralised or a
distributed workflow. It is centralised when a single entity
governs the entire workflow control flow. Contrastingly, it
is distributed when multiple entities collaboratively define
control flow [74]. Figure 9 illustrates the contrast between
a centralised and a distributed workflow. The upper part
shows a central composite service that defines a workflow for
the sequential invocation ofA.opA1,A.opB1,A.opC1,A.opD1and A.opE1. The lower part shows a possible distribution of
the same workflow control flow over three composite services
deployed on different things.

A.op

A

opA1

B

opB1

A1 B.opB1

Figure 9: Centralised workflow vs distributed workflow.

Although a centralised workflow facilitates the design
and maintenance of an IoT system, implementing a large-
scale IoT system using such an approach is inefficient and
infeasible [133]. This is because a central entity constitutes a
single point of failure and attack, and leads to a performance
bottleneck since all control and data goes through it [27, 34,
140, 142, 144, 148, 189, 190, 191]. Moreover, a central entity
negatively impacts the availability of an IoT system.

The distributed nature of IoT requires control and data to
pass through geographically dispersed entities (potentially de-
ployed on different business domains) [32, 37, 133, 166]. For
that reason, no single domain should govern the entire com-
position workflow, since multiple domains (perhaps in the
order of millions) may want control over their own workflow
part [74, 190, 192]. For instance, the CityManagement com-
posite may potentially be controlled by the City Council, and
a payment provider company could operate the Payment com-
posite. This issue clearly implies that every administrative
domain should be able to manage their own workflow defini-
tion. Thus, a distributed workflow should be part of any IoT
service composition mechanism, since it allows interoperabil-
ity between different domains and improves load balancing,
throughput and availability of an IoT system [74, 87].
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5.4. Decentralised Data Flows
Data flow defines the way data elements are moved from

one service to another in a service composition [71]. This
process can be done in three different ways: centralised,
distributed or decentralised.

In the centralised approach [112, 136, 193, 194], a sin-
gle composite mediates the exchange of data between ser-
vices (see Figure 10(a)). Although it facilitates data man-
agement, the mediator becomes a potential bottleneck and
introduces additional network hops for data exchange, since
all data passes through it. This negatively impacts QoS by
increasing the response time, and leads to network congestion
[34, 141, 142, 190, 195], especially when there are plenty of
IoT services exchanging huge amounts of data continuously
[24, 25, 187, 190, 196].

IoT Atomic 
Service

Operation

Thing

IoT Composite 
Service (Mediator)

Data Flow

Figure 10: Data flow approaches.

To avoid a single bottleneck, the distributed approach
[133, 139, 140, 141, 142, 143, 144, 146] removes the cen-
tral composite and distributes the load of data over multiple
composites (see Figure 10(b)). Although this improves load
balancing, it introduces unnecessary network overhead as
data passes through many mediators, even if data is unim-
portant for them, i.e., the more mediators, the more network
overhead.

IoT services must exchange data as efficiently as possi-
ble (by minimising network hops), in order to avoid perfor-
mance bottlenecks, achieve better response time and improve
throughput [147]. A decentralised approach provides the
most suitable data exchange for service composition since
it requires only one network hop to pass data directly from
a service producer to a service consumer (see Figure 10(c))
[34, 117, 152, 162, 195, 197, 198, 199]. For example, the
data generated by Booking.book should be passed to Dis-
play.showMap, without passing through any other entity that
does not require the produced data (e.g., the CityManagement
composite or the Vehicle composite). In general, the amount
of data transmitted in SPark may potentially be huge due
to the large number of services involved of which sensors
generate data continuously. Therefore, SPark requires a com-
position mechanism with support for decentralised data flows
to provide an optimal QoS.

5.5. Separation of Control, Data and Computation
Large-scale IoT systems may potentially span multiple

administrative domains and exhibit a high degree of hetero-
geneity in many different forms [25, 74, 200]. For instance,
there may be different service providers (e.g., Amazon AWS
IoT and IBM Watson), a wide variety of programming lan-
guages (e.g., Swift and embedded C), multiple operating
systems (e.g., Contiki and TinyOS) and different network
communication protocols (e.g., CoAP and MQTT). For that
reason, service composition mechanisms must provide the
means to deal with such heterogeneity, in order to compose
large-scale cross-domain IoT systems. This is, in fact, one of
the major challenges for building IoT systems [200].

To enable flexible service composition in such heteroge-
neous environments, control flow, data flow and computation
should be orthogonal [35, 36, 38, 76, 144, 201, 202]. This
would enable separate reasoning of concerns so system de-
velopers can focus on IoT service composition, while service
developers focus on efficient service functionality [37, 74, 76].
Consequently, services are workflow agnostic because work-
flow control flow is never embedded in the computation of
many services. Moreover, the separation of control and com-
putation facilitates workflow monitoring [29].

Figure 11 illustrates a separation of control, data and
computation. There are two computations defined in A.opA1
and B.opB1. The control flow part defines a workflow for
the sequential invocation of A.opA1 and B.opB1, without
considering data flow and computation. The data flow part
defines intermediate processing of the output from A.opA1,
before sending it to the input of B.opB1. When control is
mixed with data, such processing represents an extra control
flow step which is intrusive to the original workflow.

Computation De nition

Control Flow De nition

Data Flow De nition

A.opA1 B.opB1

A.opA1 B.opB1
Intermediate

Data 
Processing

io

A

opA1
o

B

opB1
i

IoT Atomic 
Service

Operation

Data Flow

Control Flow

i Input

o Output

Figure 11: Separation of control, data and computation.

The separation of data flow will additionally enable sep-
arate data management for improving performance without
considering control flow [35, 162]. Similarly, control flow
can be used in isolation for defining efficient deployment
strategies that do not consider data flow. Moreover, different
technologies can be used for implementing control flow, data
flow and computation separately [35]. For instance, devel-
opers of SPark could use CoAP for passing control between
services, the Blockchain for managing data flows and em-
bedded C for implementing service computation. Providing
independent reasoning of concerns also enables a separate
validation and verification (V & V) of services.

When control is mixed with computation, a service
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provider and a service consumer are tightly coupled because
invocations are originated in the consumer’s computation.
Thus, changing workflow control flow in one service requires
further changes in the respective computation. This rigid-
ity evidently limits the scalability of IoT systems because
it is difficult to add, remove, change and replace services
(and system workflow control flow). For that reason, reusing
services is not possible at scale when control is mixed with
computation [29, 37, 71, 74, 203].

Suppose there is a branching control flow structure
in the computation of Booking.book, for invoking either
Provider1.payVisa orProvider2.payWallet. As a result, Book-
ing.book is not reusable as it is since it must be adapted to the
requirements of other systems, e.g., it must be updated when
two new payment providers come into play (e.g., Provider3
and Provider4). As another example, SPark could need the
parallel execution of Payment.Pay and Vehicle.driveVehicle,
in order to improve concurrency. In this case, the sequence
of invocations hardcoded in SPark.findBestParking must be
replaced with a parallel control flow structure.

Generally speaking, large-scale IoT systems require sepa-
rate reasoning of control, data and computation for indepen-
dent maintenance, validation, verification, reuse and evolu-
tion of those concerns. This separation of concerns could
also result in reduced time to market and reduced software
production and maintenance costs [74].
5.6. Workflow Variability

Large-scale IoT systems operate in highly dynamic envi-
ronments subjected to variability caused by external or inter-
nal factors [39, 41, 204, 205]. External factors are beyond the
scope of the system and include changes in requirements and
increasing workloads. Internal factors are associated with the
system operation and include system failures and sub-optimal
behaviours.

A service composition mechanism must support the def-
inition of alternative behaviours, in order to adapt a com-
posite to changes in both the external and the internal en-
vironment. As manually choosing alternative behaviours is
a costly and inefficient management process, when there
are many services in the composite, behaviours must be
selected autonomously (i.e., with no human intervention)
[206]. Thus, variability of behaviour is a crucial desideratum
for the realisation of large-scale autonomous IoT systems
[23, 39, 40, 41, 87, 207].

Workflow variability [157, 208] allows the definition of
alternative control flow constructs (i.e., behaviours) in a ser-
vice composition (see Figure 12), and it is particularly useful
for autonomously changing workflows at runtime. For in-
stance, the SensorNetwork composite may define variable
parallel behaviours for pulling data, depending on a vehicle’s
location. For one vehicle, it may pull data from Sensor1
and Sensor2, whilst for another one it could pull data from
Sensor10, Sensor29 and Sensor34. As another example, con-
sider multiple payment service providers that offer different
QoS (which is always fluctuating according to different work-
loads). For this, a variable branching construct can be used to

dynamically choose the Provider service with the best QoS.

Work ow 
Start

Work ow 
Termination

IoT Atomic 
Service

Operation Control 
Flow

A

opA1

B

opB1

Two Services

A.opA1 B.opB1

A.opA1

B.opB1 A.opA1

B.opB1 A.opA1 B.opB1

Figure 12: Workflow variability.

When there is a family of related compositions, a Great-
est Common Denominator [208] is a base variability model
that can be reused for defining alternative compositions (also
known as configurations). For example, suppose a SPark ve-
hicle can be either manual or self-driving. A manual vehicle
requires the services GPS and Display, whilst a self-driving
one uses the service DrivingCtr in addition. For this, the
Vehicle composite of Figure 6 would be the Greatest Com-
mon Denominator, which can be reused for defining two
alternative behaviours for two different vehicles.

Workflow variability is not only useful to accommodate
the requirements of different vehicles, but also meaningful for
different cities and users. Consider the case of Northern Ire-
land where many cities offer free on-street parking, and a few
others (e.g., Belfast, Lisburn andNewry) impose a tariff [209].
Here, some SPark workflow variants may require a Payment
composite, while others not. At the city scale, it would be-
come very difficult to define workflows from scratch since
many services would need to be changed and customised.
Users can also require different workflows according to their
needs, e.g., one user may require pre-payment, whereas an-
other one may require post-payment. However, manually
changing behaviour at runtime to accommodate different
user requirements is infeasible. Thus, workflow variability
represents a suitable solution for tackling the above scenarios.

In order to define workflow variability, a service composi-
tion mechanism must enable total compositionality by which
all behaviours (e.g., operations) from the composed services
are semantically available in a composite service [157, 159].
This concept contrasts with partial compositionality where
only named and selected behaviours are semantically pre-
served, leading to a combinatorial explosion of behaviours
as the number of services increases [159].4 Figure 13 illus-
trates the dichotomy between total and partial compositional-
ity. The lower section shows the preservation of operations
A.opA1 and B.opB2 in the composite service, for the creation
of a single workflow involving those operations. Remarkably,
the upper section depicts a composite service that preserves
all the operations from the sub-services, which means that
alternative workflows can be created. For instance, we could
define a sequential workflow for the invocation of B.opB1

4For example, there are 2k − 1 possible scenarios for pulling sensor
data, where k is the number of sensors.
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and A.opA2, or an alternative sequence for the execution of
A.opA1, B.opB2 and A.opA1. These behaviours are impossi-
ble to achieve with partial compositionality which allows the
definition of only one fixed workflow at a time.

Work ow Termination Control Flow

IoT Atomic Service Operation Preserved Operation Lost

IoT Composite Service Work ow Start * = Any Operation

A

opA2

B

opB2

opA1 opB1

A.opA1 B.opB1

Figure 13: Total compositionality vs partial compositionality.

6. Analysis of IoT Service Composition
Mechanisms
This section reviews and analyses the fundamental seman-

tics of current IoT service composition mechanisms, namely
(centralised and distributed) dataflows, (centralised and dis-
tributed) orchestration, choreography and DX-MAN. The
goal is to determine how well they fulfil the functional scal-
ability requirements of IoT systems. For this analysis, we
investigate the following research questions per mechanism:

• RQ1: Is there any architectural entity explicitly defin-
ing control flow?

• RQ2: Are atomic services location-agnostic of other
atomic services?

• RQ3: Is it possible to distribute a workflow over mul-
tiple entities?

• RQ4: Do atomic services exchange data directly?
• RQ5: Do atomic services perform computation with-

out passing any data or control to other atomic ser-
vices?

• RQ6: Is there any notion of workflow variants?
For R1-R4 and R6, we use a tick mark to indicate that a

specific mechanism fulfils the requirement being analysed,
or a cross mark to indicate the opposite. RQ5 is the only
requirement that uses a textual representation for showing

which concerns (i.e., control, data and computation) are inde-
pendent. To answer RQ6, we need to determine the composi-
tionality of a mechanism which can be either total or partial
(see Section 5.6). To do so, we investigate the following
research questions:

• RQ7: What is the resulting type from composition?
• RQ8: How many workflows does the composition

mechanism define?
6.1. Dataflows

Dataflows, or Flow-Based Programming [129, 130, 131],
is a composition mechanism that defines a workflow using
data transformations (e.g., filter, split, union and sort) as well
as exogenous data exchange between services [71, 132]. A
dataflow description is a directed graph where vertices are
asynchronous data processing units (invoking service oper-
ations), and edges are connections for passing data streams
between vertices via the network (by message passing or
events). A vertex explicitly defines input ports and output
ports. When it receives data from all inputs, it performs some
computation and writes results in output ports. The resulting
data is then moved to other vertices via an edge. This process
is illustrated in Figure 14.

Figure 14: Composition by dataflows.

Dataflows can be centralised or distributed. A centralised
dataflow [83, 116] defines a single coordinator for managing
an entire graph and exogenously invokes service operations.
A distributed dataflow [37, 38, 133, 134] partitions and dis-
tributes a complex graph over multiple coordinators that in-
teract directly by exchanging data between vertices. Figure
14(a) shows a centralised dataflow for a pipeline of services A,
B, C and D. When the coordinator Flow1 is triggered, vertex
V-A1 invokes A.opA1 and passes the result to the vertex V-B1which, in turn, executes B.opB1. Next, the result of V-B1 ispassed to the vertex V-C1 which executes C.opC1. Finally,the data of V-C1 is moved to the vertex V-D1 and then pro-
cessed byD.opD1. A distributed version of the same pipeline
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Table 2
Compositionality of dataflows.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Centralised
Data�ows

Separation of Control/Data/Computation

Work�ow Variability

Data/Computation

Distributed
Data�ows

Data/Computation

Table 3
Analysis of composition by dataflows w.r.t. the scalability desiderata.

is shown in Figure 14(b), where there is an edge between
V-B1 and V-C1 for moving data from the Flow1 composite
to the Flow2 composite.

Dataflows are increasingly popular for composing IoT
systems. In particular, they are widely used for the In-
ternet of Data (IoD) [210] which involves data collection
from multiple sources (e.g., sensors), data analysis and con-
trol of the physical world. This paradigm has been re-
ferred to as Sense-Compute-Control (SCC) [211].5 Currently,
there are many platforms for composing IoT services using
dataflows. Examples include Node-RED [83], COMPOSE
[214], Glue.Things [116], LabVIEW [135], Paraimpu [215],
Virtual Sensors [111], SpaceBrew [216], FogFlow [18], ASU
VIPLE [217], ThingNet [126], Calvin [218], IoT Services
Orchestration Layer [219], NoFlo [220] and many others
[221, 222, 223, 224].

As the Web 2.0 became more data-centric and user-
friendly [65, 71], dataflows have gained popularity for IoD
through mashups. Mashups [225] are realised by dataflows
[71, 226], and they allow the composition and visualisation
of data streams on a graphical user interface displayed on
the Web [65, 71, 227]. Examples of mashup tools include
WoTKit [228], IoTMaaS [196] and Clickscript [56].

Dataflows have been accepted as coordination languages
since a graph is defined in a coordinator that exogenously in-
vokes services according to a dataflow description [129, 130,
133]. A dataflow graph is typically created with a graphical
editor and executed by an engine (i.e., the coordinator), and
it is triggered by either timing constraints or events.

A dataflow coordinator is the only entity aware of service
locations, and provides separation between data and compu-
tation. This separation allows service developers to focus on
data stream computation while system developers wire up

5Do not confuse data analysis tools [212, 213] with dataflows. A data
analysis tool is a software that allows the collection, storing, indexing, pro-
cessing, monitoring and visualisation of data. On the other hand, dataflows
specify how data is passed between services according to a dataflow graph
specification.

vertices exogenously [133]. However, despite the aforemen-
tioned advantages, decentralised data flows are not supported
as data streams always pass through data flow coordinators.

Although passing data between vertices is explicitly de-
fined in a dataflow graph, control flow is implicit in the col-
laborative data stream exchange. This is because control flow
statements are not visible in the graph specification.

In general, a graph specification is a single flat workflow
of named and selected service operations. It might seem that
a distributed dataflow provides multiple workflows. However,
this is not true because a distributed dataflow graph is just a
single nested workflow, distributed over different coordina-
tors. Thus, dataflows only provide partial compositionality
and do not support workflow variability (see Table 2).

Table 3 summarises the results of our analysis of data
flows w.r.t. the scalability desiderata. Both centralised
dataflows and distributed dataflows have similar characteris-
tics. The only difference is that the latter provides support
for distributed workflows by partitioning a dataflow graph
over multiple coordinators.
6.2. Orchestration

Orchestration can be centralised or distributed. Cen-
tralised orchestration [72, 136, 137, 138] describes interac-
tions between services from the perspective of a central coor-
dinator (also known as orchestrator) which has control over all
parties involved. It explicitly defines workflow control flow
to coordinate the invocation of service operations, in order
to realise some complex function that cannot be achieved
by any individual service [69, 70, 229]. In a distributed
orchestration, also known as “decentralised orchestration”
[139, 140, 141, 142, 143, 144, 145, 146, 147, 148], multiple
coordinators collaboratively define workflow control flow.

An orchestration is typically defined using a workflow
language such as BPEL [70, 81, 230, 231, 232, 233, 234, 235]
or BPMN [86, 236]. The resulting workflow has tasks for
passing control among services according to explicit control
flow constructs (for sequencing, parallelising, branching and
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Table 4
Compositionality of orchestration.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Centralised
Orchestration

Separation of Control/Data/Computation

Work�ow Variability

Control/Computation

Distributed
Orchestration

Control/Computation

Table 5
Analysis of composition by orchestration w.r.t. the scalability desiderata.

looping) [71]. In distributed orchestration, the interaction
between coordinators can be done in three different ways: (i)
with an extra task [140], (ii) with two extra tasks [141, 142,
148] or (iii) without any extra task [139, 144, 145]. In (i), an
orchestration invokes the interface of another one using an
external task to the system’s workflow control flow. In (ii),
there are two different tasks for receiving and passing control
(and data) between two orchestrations. Finally, in (iii), two
orchestrations interact by moving control (and data) directly
between the tasks of the system’s workflow control flow.

An orchestration engine is responsible for executing a
workflow process by invoking service operations in a given
order. Although traditional engines can be used (e.g., Ca-
munda BPM workflow engine [86, 237], Activiti [238, 239]
and AWS Step Functions [151]), recently we have seen the
emergence of orchestration engines particularly designed for
IoT systems (e.g., PROtEUS [149] and [150]).6

Figure 15(a) illustrates a centralised orchestration for the
services A, B,C andD, where the coordinatorOrch1 defines a
“composite service” for the sequential invocation of A.opA1,
B.opB1, C.opC1 and D.opD1. Three distributed versions aredepicted in Figure 15(b). In the former, Orch1 defines a
“composite service” for the sequential execution of A.opA1and B.opB1, and then uses an extra task to pass control (and
data) to Orch2. Orch2 defines another “composite service”
to sequentially invoke C.opC1 and D.opD1. The second dis-tributed version uses two extra tasks for passing and receiving
control (and data) between Orch1 and Orch2. Finally, in the
last distributed version, control and data are passed directly
from B.opB1 to C.opC1.A glance at Figure 15 reveals that services are workflow
agnostic because an orchestrator is the only entity aware of
the location of other services. Having workflow agnostic ser-
vices implies that an orchestrator provides separation between
control flow and computation. This separation allows service

6Aworkflow engine can be deployed on either a specialised server [237]
or a service bus like a Gateway [112, 193, 194].

IoT Composite Service (Coordinator) IoT Atomic Service

Task Data Flow Explicit Control FlowOperation

a) Centralised Orchestration

b) Distributed Orchestration

Figure 15: Composition by orchestration.

developers to focus on efficient service functionality (i.e.,
computation) while system developers focus on workflow
control flow in orchestrator(s).

Although a central coordinator facilitates the manage-
ment of control flow logic, it easily becomes a performance
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Table 6
Compositionality of choreography.

bottleneck because all data passes through it [140, 142]. This
is because data follows control [71, 162]. Furthermore, the
resulting composite service is a single flat workflow, for the
invocation of named and selected operations, which must
be transformed into a service [159, 240]. For that reason,
orchestration only provides partial compositionality and does
not support workflow variability (see Table 4).

Table 5 summarises the results of our analysis of orches-
tration w.r.t. the scalability desiderata, where we can see that
centralised orchestration and distributed orchestration have
similar characteristics. The only difference is that the latter
supports distributed workflows via the partition of workflow
control flow over multiple coordinators.
6.3. Choreography

A choreography describes service interactions from a
global perspective using a public contract (also known as
protocol) [136, 137, 138, 152, 153]. The contract specifies a
“conversation” among participants via decentralised message
exchanges, which can be modelled by a global observer using
a choreography modelling language [122, 138, 153].7 An
interaction-based model allows the definition of event-driven
or request-response messages by connecting required and
provided interfaces. Examples include WS-CDL [241] and
Let’s Dance [242]. An interconnected interface model, on the
other hand, allows the specification of control flow per par-
ticipant. Examples include BPEL4Chor [240], Web Service
Choreography Interface (WSCI) [243] and BPMN [244].8

A protocol defines roles for the collaborative realisation
of a global workflow with no control over the internal details
of the participants involved [229]. A role explicitly describes
a participant workflow control flow in terms of expected and
produced messages. When a concrete service instance plays
a role, it must behave accordingly by exchanging messages
with other instances, using either direct message passing
(e.g., invoking REST APIs) or events [63, 74, 117, 122].9
This process is known as choreography enactment.

IoT is moving towards a more decentralised environ-
ment to reduce the bottleneck caused by centralised envi-
ronments. As choreographies represent a natural way of
dealing with such decentralisation, there are currently some
platforms for composing IoT services by choreographies, e.g.,

7A Microservice architecture prefers choreography over orchestration
to support decentralised workflows [122].

8The choice of the contract depends on the type of participants involved
which can be either atomic services or orchestrations.

9Service participants are tightly coupled in terms of dependencies. In
choreographies based on direct message-passing, services hardcode invoca-
tion calls in service computation. In event-driven choreographies, services
are tightly coupled because senders and receivers agree a topic queue in
advance [245].

CHOReVOLUTION [154], ChorSystem [246], Actorsphere
[156], BeC3 [117] and TraDE [35].

Figure 16 illustrates a sequential choreography for the
services A, B, C and D, where a protocol (defined with stan-
dard BPMN 2.0 notation [236]) specifies that B.opB1 expectsa message from A.opA1, C.opC1 a message from B.opB1 and
D.opD1 a message from C.opC1. When the choreography is
enacted, there is a chain reaction that starts with the invoca-
tion of A.opA1 and finishes with the execution of D.opD1.

Data Flow Explicit Control Flow

IoT Composite Service IoT Atomic Service Operation

B

Figure 16: Composition by choreography.

Figure 16 shows that workflow control flow is explicitly
defined in the protocol. During enactment, control is passed
alongside data in every invocation, so services need to be
aware of the location of other services. Of course, a service
registry can be used, but this entails adding an “intrusive”
element external to the composition (see Section 5.2).

Like orchestration, the resulting composition is a flat
workflow for the invocation of selected and named operations
(specified in the protocol). If the resulting workflow needs to
be further composed, a choreography needs to be transformed
into a service [159, 240]. For that reason, a choreography
is partially compositional and workflow variability is not
supported (see Table 6). Table 7 summarises the results of
our analysis of choreography w.r.t. the scalability desiderata.

None

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Choreography

Separation of Control/Data/Computation

Work�ow Variability

Table 7
Analysis of composition by choreography w.r.t. the scalability
desiderata.
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6.4. DX-MAN
DX-MAN [157, 158, 159] is an algebraic model where

IoT services and service composition operators are first-class
semantic entities. A service is a stateless distributed unit of
composition which can be either atomic or composite, and its
semantics is a workflow space (i.e., a family of workflow vari-
ants). A composition operator defines variable control flows
between families of workflow variants (see Figure 17(b)).

Algebraic
Reference

Atomic 
service

Composite
Service

Atomic
Work�ow 
Space

Operation

Composite
Work�ow 
Space

Computation
Unit

(a) Atomic 
      Service

Figure 17: DX-MAN model.

An atomic service is formed by connecting an invocation
connector with a computation unit (see Figure 17(a)). It is a
finite workflow space whose elements invoke a different oper-
ation implemented in the computation unit via an invocation
connector. As a computation unit is semantically identical
to a traditional SOA service (because it is a set of opera-
tions), DX-MAN atomic services and SOA atomic services
are semantically different (cf. Section 2.1).

A composite service connects a composition operator
with multiple (atomic or composite) sub-services (see Fig-
ure 17(c)), which is equivalent to connecting a composition
operator with multiple sub-workflow spaces. The result is a
composite workflow space whose workflow variants invoke
elements of atomic sub-workflow spaces and/or entire com-
posite sub-workflow spaces, according to the control flow
definition of the composition operator being used. There
are composition operators for sequencing (i.e., sequencer),
branching (i.e., inclusive selector and exclusive selector) and
parallelism (i.e., paralleliser). Figure 18 shows that the se-
quencer and paralleliser operators define infinite workflow
variants, whilst the branching operators define 2n−1 variants
s.t. n is the total number of atomic sub-service operations
plus the number of composite sub-workflow spaces. For
further details on this matter, see [157].

Number of
Work�ows

Composition
Operator

XSEL

Figure 18: DX-MAN composition operators.

In addition to composition operators, DX-MAN provides
special transformation operators (called adapters) for sequenc-
ing, branching, parallelising, looping and guarding over in-
dividual workflow spaces. Hence, DX-MAN is Turing com-
plete [247]. Currently, there is only one platform that im-
plements the DX-MAN model [163], and it is available at
https://github.com/damianarellanes/dxman.

In DX-MAN, a composition is done incrementally in a
bottom-up fashion. So, a hierarchical connection structure
of operators sits on top of atomic services. Figure 19(a)
shows a DX-MAN composition that involves four atomic
services and three composite services. The first step is to
model the atomic services A, B, C and D with the invocation
connectors IA, IB , IC and ID. This process results in the
atomic workflow spacesWA,WB ,WC andWD, respectively.In the next hierarchy level, we create the composite services
E and F. To do so, we use the composition operator SEQEto define a composite workflow spaceWE from the atomic
sub-workflow spacesWA andWB . Likewise, we define thecomposite workflow space WF using the operator SEQFwhich operates on the atomic sub-workflow spaces WC and
WD . Finally, we create the top-level composite serviceG. For
this, we use the composition operator SEQG which defines
the composite workflow space WG fromWE and WF .

A

WA=
{wA1,{

E

WE

WA

WB

Figure 19: Composition by DX-MAN.

Note that workflow spaces from sub-services are available
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Table 8
Compositionality of DX-MAN.

in the next hierarchy level thanks to the algebraic semantics of
the model. Consequently, the result of algebraic composition
is not a single workflow, but a (potentially infinite) workflow
space (i.e., a service) of workflow variants. Thus, DX-MAN
supports total compositionality (see Table 8).

When a composition is done, an abstract workflow tree
is automatically derived, which represents the hierarchical
control flow structure of the composite (see Figure 19(b)). To
select a particular variant, a concrete workflow tree must be
created, which is just a projection function over a composite
workflow space. See [157, 158] for further details.

Figure 19(b) shows the abstract workflow tree of our ex-
ample from which we can choose infinite sequential workflow
variants (see Figure 19(c)). One case is depicted in Figure 20,
where a concrete workflow tree is created for the sequential
execution ofA.opA1, B.opB1, C.opC1 andD.opD1. Figure 21shows another variant where a different concrete workflow
tree is defined to invoke A.opA1 and D.opD1 sequentially.

IB

SEQE

IC

SEQE

SEQG

A

E

Figure 20: A workflow variant derived from Figure 19 for
sequentially executing A.opA1, B.opB1, C.opC1 and D.opD1.

Note that a DX-MAN composition has composition oper-
ators for the coordination of workflow control flow only. This
is because data flow and control flow are modelled separately
for each workflow variant. The paper [162] describes further
details on how to define data flows per variant.

A glance at Figures 20 and 21 reveals that data, control
and computation are independent concerns. Thus, data is ex-
changed in a P2P fashion between atomic services, while com-
position operators coordinate workflow execution by passing
control only. The coordination can be done in a distributed

IB

SEQE

IC

SEQE

SEQG

A

E

Figure 21: A workflow variant derived from Figure 19 for
sequentially executing D.opD1 and A.opA1.

way since composition operators can be deployed on different
things [159]. As coordination happens from outside services,
computation units do not interact with one another, which
results in independent distributed computations.

When an invocation connector receives control, it reads
data from a decentralised data space (i.e., the Blockchain in
the current implementation), invokes a service operation and
writes results in the space. For that reason, only invocation
connectors know the location of the connected computation
units (i.e., service implementations). Furthermore, as in-
vocation connectors perform operations on the data space,
composition operators never exchange data during workflow
execution. This (transparent) decentralised data exchange is
achieved by the separation of control and data [162].

Table 9 summarises the results of our analysis of DX-
MAN w.r.t. the scalability desiderata.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

DX-MAN

Separation of Control/Data/Computation

Work�ow Variability

Control/Data/
Computation

Table 9
Analysis of composition by DX-MAN w.r.t. the scalability
desiderata.

D. Arellanes and K.-K. Lau: Preprint submitted to Elsevier Page 15 of 26



Evaluating IoT Service Composition Mechanisms for the Scalability of IoT Systems

Table 10
Compositionality of IoT composition mechanisms.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Centralised
Data�ows

Separation of Control/Data/Computation

Work�ow Variability

Data/Computation

Distributed
Data�ows

Data/Computation

Centralised
Orchestration

Control/Computation

Distributed
Orchestration

Control/Computation

Choreography

None

DX-MAN

Control/Data/
Computation

Table 11
Analysis of scalability desiderata of IoT composition mechanisms.

7. Evaluation
This section presents an evaluation of service composi-

tion mechanisms w.r.t. compositionality and the functional
scalability requirements of IoT systems.

Table 10 summarises the analysis on compositionality
presented in Section 6 to answer the research questions RQ7
and RQ8. It shows that DX-MAN is the only mechanism that
enables total compositionality since algebraic composition
yields a service with a potentially infinite number of workflow
variants. The other mechanisms define only one workflow at
a time as the composition result is not a service, but a single
flat workflow that invokes selected and named operations.

Research questions RQ1-RQ6 have also been studied in
Section 6. They enable us to analyse how well service compo-
sition mechanisms fulfil the scalability requirements: (i) ex-
plicit control flow; (ii) location transparency; (iii) distributed
workflows; (iv) decentralised data flows; (v) separation of
control, data and computation; and (vi) workflow variability.

Requirements (i), (ii), (iii), (iv) and (vi) are binary be-
cause they can be either supported (i.e., a tick mark) or not
supported (i.e., a cross mark). Accordingly, we use Equation
1 to determine the satisfaction degree of binary requirements
for a specific composition mechanism,

rb(b) =
b
5

(1)

where rb is the satisfaction degree of binary requirements
and b is the number of supported binary requirements by the
mechanism s.t. b ∈ (ℕ ∩ [0, 5]) and rb ∈ (ℚ ∩ [0, 1]).

The requirement (v) is quinary since it admits 23 − 3
possible results: None, Control/Data, Control/Computation,

Data/Computation and Control/Data/Computation. This is
because (v) considers three different concerns (i.e., control,
data and computation) and discards options involving only
one concern. When (v) is None, the requirement support
becomes zero. Accordingly, Equation 2 determines the de-
gree of separation of concerns for a specific composition
mechanism,

rc(c) =
c
3

(2)
where rc is the degree of separation of concerns and c is the
number of independent concerns supported by themechanism
s.t. c ∈ (ℕ ∩ {0, 2, 3}) and rc ∈ (ℚ ∩ [0, 1]).

To determine the satisfaction degree of a composition
mechanism w.r.t. scalability desiderata, Equations 1 and 2
are used in Equation 3. The result is a percentage that takes
into account five binary requirements and one quinary re-
quirement. A higher percentage means a higher satisfaction.

s(rb, rc) = (rb ×
5
6
+ rc ×

1
6
) × 100 (3)

where s is the overall satisfaction degree w.r.t. all scalability
requirements s.t. s ∈ [0, 100].

Table 11 summarises our analysis of scalability desiderata
and Table 12 shows the respective satisfaction degrees. Our
interpretation of the results is presented below.

Centralised dataflows is the worst mechanism because
it supports only one binary requirement (i.e., location trans-
parency) and separates two concerns (i.e., data and compu-
tation). This means that the satisfaction degree of binary
requirements is 0.20, while the satisfaction degree of separa-
tion of concerns is 0.66. Thus, the overall satisfaction degree
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 Centralised
Orchestration

44.44%0.40

 Distributed
Orchestration

61.11%0.60

 Centralised
Data�ows

27.78%0.20

 Distributed
Data�ows

44.44%0.40

 Choreography 0.00 50.00%0.60

 DX-MAN 1.00 100.00%1.00

r
b

r
c s

0.66

0.66

0.66

0.66

 2

 3

 1

 2

03

 35

b c

2

2

2

2

Table 12
Satisfaction degree of IoT composition mechanisms w.r.t. scal-
abiility desiderata.

of centralised dataflows is 27.78%. Distributed dataflows pro-
vide distributed workflows in addition. Consequently, it pos-
sesses a (higher) satisfaction degree of binary requirements
equal to 0.40 and, therefore, a (higher) overall satisfaction
degree of 44.44%.

Although centralised orchestration has the same satis-
faction degree as distributed dataflows, it supports different
binary requirements (i.e., explicit control flow and location
transparency) and separates different concerns (i.e., control
and computation). Distributed orchestration is similar, yet
different. It offers distributed workflows in addition for a
(higher) satisfaction of binary requirements of 0.60 and, there-
fore, a (higher) overall satisfaction degree of 61.11%.

Choreography covers three binary requirements (i.e., ex-
plicit control flow, distributed workflows and decentralised
data flows) and does not provide any separation of concerns
since control and data are mixed in service computation. This
means that the satisfaction degree of binary requirements is
0.60, with a null separation of concerns. Overall, choreogra-
phy fulfils scalability requirements to a degree of 50%.

DX-MAN is the only mechanism that fulfils all binary
requirements and provides the separation of control, data and
computation. It is also the only one that supports workflow
variability because of total compositionality (see Table 10).
Accordingly, the satisfaction degrees of binary requirements
and the separation of concerns are both 1. Thus, DX-MAN
best fulfils the desiderata with a satisfaction degree of 100%.

8. Discussion
This section discusses the results presented in Section

7 and covers additional issues concerning compositionality,
scalability requirements and the relationship between them.

Our results show that explicit control flow is supported
by the majority of the mechanisms. In particular, orchestra-
tion defines control flow in orchestrators, choreography in a
protocol and DX-MAN in composition operators. Dataflows
is the only one that does no support such a requirement.

Workflow distribution is also meet by the majority of
the mechanisms, except centralised dataflows and centralised
orchestration where a coordinator fully governs a workflow.

Almost all composition mechanisms use a coordinator to
exogenously define workflow(s) and, therefore, ensuring the

separation of at least two concerns. In particular, orchestra-
tion and DX-MAN separate control and computation, while
dataflows orthogonalises data and computation. Such separa-
tion enables location transparency as only coordinators are
aware of atomic service locations. Choreography is the only
mechanism without any support for location transparency,
since control and data are mixed with computation.

There is a special choreography implementation based
on the data-driven paradigm in which some computation
is triggered once input data becomes available [199]. As a
protocol must explicitly define workflow control flow, the
analysis presented in Section 6 is also applicable.

Generally speaking, avoiding coordinators allows chore-
ography styles to support decentralised data flows. So, there
is a trade-off between coordination and decentralised data
flows. DX-MAN obviates this problem by separating data in
addition to control and computation. This separation enables
the realisation of decentralised data flows, without consider-
ing neither control nor computation. So, data never passes
through composition operators (i.e., coordinators) [162].

Some orchestration approaches [34, 146, 195, 198] par-
tially separate control from data algorithmically. To achieve
this, coordinators pass data references alongside control,
rather than exchanging data values. However, analysing data
dependencies to extract references is a challenging task be-
cause data and control are still semantically entangled.

For orchestration and dataflows, a coordinator is com-
monly referred to as a composite service. However, it is just
a composition of specific operations (i.e., a workflow) that
must be transformed into a service, rather than a composi-
tion of entire services (with all their provided operations).
Only DX-MAN achieves an actual composition of services
(not operations) as it defines a composite service without
any transformation step while preserving all service opera-
tions from which multiple workflow variants can be derived.
Thus, algebraic composition equates to total compositionality
which, in turn, implies workflow variability. A DX-MAN
composite service is in fact semantically equivalent to a (po-
tentially infinite) set of orchestrations. This is because each
element in a composite workflow space is a different compo-
sition workflow as regarded by existing mechanisms. For any
existing composition mechanism to be equivalent to a com-
posite workflow space, it would require to include all possible
combinations of execution paths in the workflow definition,
leading to a combinatorial explosion problem. While it is
true a configurable workflow [208] can deal with this issue, it
does not define multiple workflows at a time but just a single
workflow that can be manually configured.

In this paper, we analyse the fundamental semantics of
current service composition mechanisms that allow the defi-
nition of IoT workflows. However, other mechanisms must be
considered even if they do not allow the explicit definition of
behaviour, e.g., port connections [248] and ensemble-based
composition [249]. Moreover, we did not analyse service in-
teractions where there is no definition of composite services
such as direct message passing [250], broker-based interac-
tions [112] and event-driven interactions [251]. For this, we
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refer the reader to another paper [74].
Different composition mechanisms can coexist in the

same system. For example, it is possible to build a system
where some services are composed using orchestration while
others are composed by choreography [155, 252]. Our inten-
tion is not to analyse the combination of different composition
mechanisms, but to analyse them individually. Clearly, our
analysis results apply to such a combination.

9. Conclusions
Functional scalability becomes a crucial concern for IoT

systems as the number of available services increases. For
that reason, we need to look back at the foundations of service
composition in order to tackle this challenging problem. In
this paper, we analysed the semantics of current IoT service
composition mechanisms, using an evaluation framework
that considers six functional scalability requirements: (i) ex-
plicit control flow; (ii) distributed workflows; (iii) location
transparency; (iv) decentralised data flows; (v) separation of
control, data and computation; and (vi) workflow variability.
Our results suggest that DX-MAN is the composition mecha-
nism that best fulfils the functional scalability requirements
of IoT systems. This is not surprising since such a model was
designed with scalability desiderata in mind.

It is important to note that, except DX-MAN, there are no
new composition mechanisms developed in the last decade.
This crisis is a worrying situation that must be prioritised
and remedied because of the inherent scale that IoT systems
pose. Only DX-MAN was designed with this in mind, but
we expect further developments on this in the coming years.

We do not claim that the scalability requirements we anal-
yse here are complete, as other characteristics must also be
considered. Nevertheless, we believe our evaluation frame-
work has included the most critical ones and provides a useful
starting point for further extensions that consider other func-
tional scalability desiderata such as dynamic reconfiguration,
the number of messages exchanged and the support for im-
plicit/explicit data flows. The framework can thus be refined
by other researchers when conducting further studies on IoT
service composition mechanisms.

Appendix A
A larger view of SPark is shown in Figure A.1, where

there are new composite services representing Private Park-
ings of a smart city. Also, the Display service has been
converted into a composite that uses the atomic services
WebMap and Visual. There is also a new composite service
called PathPlanning that composes multiple TrafficMonitor
composites and multiple atomic People services. In particu-
lar, a TrafficMonitor composite has multiple atomic services
that represent congestion sensors and cameras (distributed
across a city). Furthermore, the Vehicle composite has been
endowed with multiple atomicChargSt services (for charging
the battery of a self-driving vehicle). Finally, the DrivingCtr
service has been converted into a composite service with the
atomic services Brake and Steering.

It is important to note that the larger view shown in Figure
A.1 can be expanded into an even larger composition which
may become infeasible to depict in a single document.
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Figure A.1: A larger view of SPark services.
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Vehicle.getCurrentLocation GPS.getLocation CityManagement.getParking SensorNetwork.pullStates

Sensor1.pullState

Sensor2.pullState

SensorN.pullState

Figure B.1: SPark workflow control flow.

Appendix B
Figure B.1 illustrates the complete workflow of

SPark which starts with the on-demand execution of
SPark.findBestParking. Next, the SPark composite gets
the current vehicle’s location by invoking the opera-
tion Vehicle.getCurrentLocation which, in turn, invokes
GPS.getLocation. Then, it invokes the CityManage-
ment.getParking operation which internally executes the
SensorNetwork.pullStates operation from the nearest In-
foStation. In particular, SensorNetwork.pullStates pulls
the states (in parallel) from the sensors close to the ve-
hicle’s location, using the respective Sensor.pullState op-
erations. Next, the CityManagement.getParking opera-
tion uses the sensor states to determine the best (i.e.,
the free and nearest) parking space and then reserves
that parking space using Booking.book. Then, control
is passed to the Payment.pay operation which decides
to invoke Provider1.payVisa, Provider1.payMastercard or
Provider2.payWallet. Finally, the Vehicle.driveVehicle is
invoked for implicitly calling Display.showMap and Driv-
ingCtr.drive, in that order.
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