
Analysis and Classification of Service Interactions
for the Scalability of the Internet of Things

Damian Arellanes and Kung-Kiu Lau
School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Scalability is an important concern for Internet of
Things (IoT) applications since the amount of service interac-
tions may become overwhelming, due to the huge number of
interconnected nodes. In this paper, we present an IoT scenario
for real-time Electrocardiogram (ECG) monitoring, in order to
analyze how well different kinds of service interactions can fulfill
the scalability requirements of IoT applications.

Index Terms—Internet of Things (IoT), service interactions,
scalability, Internet of Services (IoS)

I. INTRODUCTION

The Internet of Things (IoT) promises a new era in which
not only people interact through Internet, but so do things.
Currently, the number of connected devices worldwide is about
17 billion, and it is estimated that this number will grow by
a factor of 1.82 in the next three years [1]. For this reason,
scalability in terms of the size of IoT applications, rather than
vertical or horizontal scalability [2], is an important concern.

For this kind of scalability, four crucial desiderata has been
identified: explicit control flow [3], separation between control
and computation [4], decentralization [5] and location trans-
parency [6]. In this paper, we analyze how well different kinds
of service interactions can fulfill these scalability requirements.

Service interactions play a central role in the Internet of
Services (IoS) [7] which will be a key enabler of the IoT
goals. IoT services interact in different ways to achieve a
common goal in a specific application. Despite an increasing
number of proposed network protocols for IoT, there is a lack
of understanding about which service interactions best fulfill
the scalability requirements of IoT applications.

The rest of the paper is structured as follows. Sect. II
presents an IoT scenario for real-time Electrocardiogram (ECG)
monitoring. Sect. III describes our classification of service
interactions. Sect. IV presents the results of our analysis. Sect.
V presents a discussion of our results. Finally, Sect. VI presents
the conclusions and the future work.

II. IOT SCENARIO: ELECTROCARDIOGRAM MONITORING
NETWORK (EMONET)

This section introduces a running example for the rest of the
paper. The example is an IoT scenario for real-time Electro-
cardiogram (ECG) monitoring: Electrocardiogram Monitoring
Network (EMoNet). EMoNet is a network deployed in a smart
city, consisting of patients with cardiac diseases, plenty of

ambulances moving around the city, patients’ smartwatches
and wearable ECG sensors. Fig. 1 depicts the workflow of
EMoNet which corresponds to a timing task triggered every 3
minutes for a particular patient. It basically consists of pulling
and analyzing ECG data, and requesting the nearest ambulance
if the patient has heart attack signs.

Fig. 1. EMoNet workflow.

The EMoNet workflow involves four independent IoT nodes
shown in Fig. 2: a wearable ECG sensor installed on a patient’s
chest, the patient’s smartwatch, a healthcare cloud and an
ambulance.

Fig. 2. Nodes and services involved in the EMoNet workflow.

The wearable ECG sensor provides the Heart Rate History
service as an interface for the records of the electrical activity
of a patient’s heart. The smartwatch provides the ECG Analysis
service that determines if a patient is showing signs of a heart
attack. A healthcare cloud provides the Emergency service
to find the nearest ambulance and request it immediately.
Ambulances provide the Assistance service to attend to those
patients in need on-site. For simplicity, we assume that these
services dispatch many requests concurrently. In the next
section, we will describe different ways to realize the EMoNet
workflow using these services.

III. SERVICE INTERACTION SCHEMAS

IoT services provide low-level functionality implemented in
nodes [8]. Resource-constrained nodes (e.g., a pulse sensor)
provide fine-grained services for basic functionality (e.g.,
fetching sensor data). Non resource-constrained nodes (e.g., a
smart TV) may offer coarse-grained services in addition.

IoT services interact via a network in order to realize
complex functionality. Services can interact by message passing,
event exchanges, or any combination thereof. In order to
determine what kind of interactions best fulfills the scalability
requirements of IoT, we have classified service interactions
into four schemas: (i) direct service interactions, (ii) indirect
service interactions, (iii) exogenous service interactions and
(iv) event-driven service interactions.

Schemas (i), (ii) and (iii) are based on message-passing,
where there are two roles: service sender and service receiver.
A service sender accesses functionality offered by a service
receiver, by passing a message (expressing control) via the
network. Schema (iv) is based on events so a service registers
itself with events that will be produced by another service(s).
In this section, we describe these four schemas in more detail.

Microservice Architecture [9] has gained considerable at-
tention in the last few years, and is becoming increasingly
important and popular for the development of IoT applications
[10]. Every Microservice Architecture is a Service-Oriented
Architecture (SOA), but not the other way round [11]. Hence,
the service interaction schemas presented in this section can
be used interchangeably in both Microservices and traditional
SOA services.

A. Direct Service Interactions

The direct service interaction schema consist of sending
a message (e.g., a XML-based document or a JSON-based
document) from a sender to a receiver with no mediator
between them [12], [13]. The sender interacts with the receiver
using Remote Procedure Calls (RPC) [14] or REST API
calls over HTTP [15]. RPC is akin to method invocations in
traditional Object-Oriented programming languages, the main
difference being that the invoked procedures may reside at
different network addresses. REST does not require to know
procedure names in advance, but only the location of external
resources that can be manipulated using HTTP methods. Direct
interactions are typically done using the request-response
pattern [16].

Fig. 3 illustrates direct interactions for the EMoNet workflow.
ECG Analysis triggers the control flow periodically by passing
control to Heart Rate History so as to get the last sensor
reading. Then, Heart Rate History returns the control to ECG
Analysis. If there are signs of a heart attack, ECG Analysis
passes control to the Emergency service which forwards control
to the Assistance service of the nearest ambulance. Control is
returned to ECG Analysis, after passing through the Emergency
service. Fig. 3 shows that data flow follows control flow, and
control and data are always originated in service computation.

Although they look old-fashioned, direct interactions are
being used in emerging technologies (including IoT). For
example, a Microservice choreography [17] describes direct
interactions which are typically done using RESTful APIs [18].
REST has also been fostered by the Web of Things [8] for
direct interactions among IoT services via the Web. Moreover,
recent server-less programming frameworks for IoT [19] enable
Java RPC for direct service interactions.

Explicit
Control
Flow

Control
Origin

Control
Return

Data
Flow

Fig. 3. Direct service interactions for the EMoNet workflow.

B. Indirect Service Interactions

The indirect interaction schema consists of using a service
bus to broker sender requests, locate an appropriate receiver,
transmit requests, and send responses back to senders. Since
it passes messages between senders and receivers, a service
bus can be thought of as a universal connector that provides a
level of indirection between services [20], [21].

Fig. 4 illustrates indirect interactions for the EMoNet work-
flow, where ECG Analysis triggers control flow periodically.
EMoNet services register their interfaces with a service bus that
forwards control (and data) originated by ECG Analysis and
Emergency, and sends back control (and data) from Heart Rate
History, Assistance and Emergency, respectively. A glance
at Fig. 4, reveals that even though a service bus provides
indirection between senders and receivers, control and data are
originated in service computation, and data follows control.

Control
Routing

Fig. 4. Indirect service interactions for the EMoNet workflow.

Although the Enterprise Service Bus (ESB) [20] has been
used for over a decade for enterprise SOA applications, the
Microservice Architecture community has recently expressed
their interest of using a lighter bus (known as Gateway) for
indirect Microservice interactions [22], [23]. An IoT application
can use a Gateway, an ESB or both [24].

C. Event-Driven Service Interactions

The event-driven interaction schema is based on the publish-
subscribe pattern [16] so there are two roles: producer (i.e.,
service sender) and consumer (i.e., service receiver). Producers
trigger events (perhaps carrying data) which are then stored
in a queue. Consumers can subscribe to the events they are
interested in, retrieve those events from the queue and react

accordingly. As events are dequeued in FIFO mode, there
is no guarantee that responses from consumers are delivered
to producers, so event-driven interactions usually follow the
principle fire and forget [25], [26], [27].

Event-driven interactions can be done with or without a
service bus. P2P event-driven interactions enable every service
to be responsible of its own queue, so events are exchanged with
no mediator. ZeroMQ is the most popular library to realize
this interaction schema.1 Fig. 5(a) shows P2P event-driven
interactions for the EMoNet workflow.

(a) P2P
event-driven
interactions

(b) Broker-based
event-driven
interactions

Fig. 5. Event-driven service interactions for the EMoNet workflow.

ECG Analysis periodically gets the last sensor readings by
consuming events produced by Heart Rate History. If it detects
a heart attack, ECG Analysis announces an emergency situation
by producing an event for Emergency. After determining
the nearest ambulance, Emergency produces an event that is
consumed only by the Assistance service of that ambulance.
Finally, Assistance produces an event for ECG Analysis to
indicate the status of the current emergency.

Broker-based event-driven interactions use an event bus to
manage event queues for a particular IoT application. An event
bus is generally implemented using a messaging protocol such
as the Advanced Message Queuing Protocol (AMQP) or the
Message Queue Telemetry Transport (MQTT). RabbitMQ is
the most popular implementation of the AMQP protocol.2 The
EMoNet services shown in Fig. 5(b) interact in the same way
as the ones shown in Fig. 5(a), with the fundamental difference
that events are now stored in the queue of an event bus.

1http://zeromq.org/
2https://www.rabbitmq.com/

Event-driven interactions are preferred to direct interactions
for implementing Microservice choreographies [9], [23], [11].
Microservices use the strategy smart endpoints and dumb pipes
[9] to define event-driven interactions in endpoints.

There is an increasing trend to use event-driven interactions
for the exchange of data between IoT applications [25], [26].
In fact, the author in [28] found that a vast majority of current
IoT platforms provide support for the event-driven interaction
schema. In particular, broker-based event driven interactions
are gaining considerable attention since MQTT was particularly
designed for resource-constrained nodes [29], [30].

D. Exogenous Service Interactions

The exogenous service interaction schema enables a co-
ordinator to define interactions (in the form of a workflow)
over mutually anonymous services or other coordinators. Thus,
control is always originated in coordinators and services do
not interact with each other [31], [32].

Exogenous interactions can be done in one or multiple levels.
One-level exogenous interactions are realized by orchestration
[33], [34], where the coordinator is a workflow engine running
in a specialized server. Fig. 6(a) shows one-level interactions
for the EMoNet workflow.

EMoNet Workflow Engine is the coordinator for all the
involved services. It passes control to Heart Rate History
and ECG Analysis sequentially, in order to pull and analyze
the last sensor readings. Then, according to the results of the
analysis, the coordinator decides if there are signs of a heart
attack. If so, the coordinator passes control to Emergency and
Assistance, in that order. A glance at Fig. 6(a), reveals that
control is always originated in the coordinator, and services are
only concerned with returning control and data after performing
some computation.

Multi-level exogenous interactions are done by hierarchical
orchestration [35], [36] or exogenous connectors [37], [38],
[39]. In this schema, multiple coordinators create a hierarchy
of service interactions. Unlike, one-level exogenous interac-
tions, in this schema control flows over multiple distributed
coordinators.

Hierarchical orchestration [36] has multiple workflow en-
gines, each of them responsible for the interaction of services
or other workflow engines. In other words, it allows nesting a
workflow within another workflow. Fig. 6(b) depicts a two-level
hierarchical orchestration for the EMoNet services. EMoNet
Workflow Engine coordinates the execution of coordinators
Monitoring Workflow Engine and Decision-Making Workflow
Engine. First, EMoNet Workflow Engine passes control to
Monitoring Workflow Engine which is responsible for the inter-
actions of the services Heart Rate History and ECG Analysis.
Once control is returned from Monitoring Workflow Engine to
EMoNet Workflow Engine, the latter passes control to Decision-
Making Workflow Engine. If Decision-Making Workflow Engine
determines that there are signs of a heart attack, it passes control
to Emergency and Assistance sequentially. Finally, the control
flow ends when the Decision Making Workflow Engine returns
control to EMoNet Workflow Engine. Fig. 6(b) shows that a

Fig. 6. Exogenous service interactions for the EMoNet workflow.

coordinator is able to pass and receive control and data to and
from other coordinators.

Exogenous connectors are lightweight distributed coordi-
nators that define micro-workflows. Fig. 6(c) illustrates how
exogenous connectors coordinate service interactions for the
EMoNet workflow. The control flow is the same as the one
depicted in Fig. 6(b) for hierarchical orchestration. Unlike
hierarchical orchestration, where control can be passed from a
coordinator to a service, in exogenous connectors control is
only passed between cooordinators (as data is an orthogonal
dimension). Furthermore, the composition of two services
results in a composite service (not a workflow) that preserves

all the operations from the sub-services. Another difference is
that coordinators do not need any specialized server as they can
run in any IoT node (including resource-constrained nodes). For
the EMoNet workflow, Heart Rate History and ECG Analysis
are composed into Monitoring Composite which is deployed
in a smart t-shirt; similarly, Emergency and Assistance are
composed into Decision-Making Composite which is deployed
in the Google Cloud. Exogenous connectors allow composite
services to be further composed into even bigger services. For
example, the Monitoring Composite and the Decision-Making
Composite are composed into the EMoNet composite which is
deployed in the patient’s mobile device.

Due to the popularity of one-level exogenous interactions
in SOA, in the last years we have seen the emergence of
software platforms to support such a schema, e.g., Intel IoT
SOL (Service Orchestration Layer) [40]. To the best of our
knowledge, there are currently no IoT platforms for multi-level
exogenous interactions.

IV. EVALUATION AND RESULTS

This section presents the results of a qualitative evaluation
of our service interaction schemas. A tick mark indicates that
a specific interaction schema fulfills the requirement being
analyzed, while a cross mark means the opposite. NA means
that the analysis is not applicable for a particular interaction
schema. In order to determine which schema best fulfills the
scalability requirements of IoT applications, we specifically
investigate the following research questions:

• RQ1: Which schemas allow the visualization of control
flow?

• RQ2: Which schemas allow a separate reasoning between
control and computation?

• RQ3: Which schemas allow decentralized interactions?
• RQ4: Which schemas enable services that are unaware

of the location of other services?

A. RQ1: Explicit Control Flow vs Implicit Control Flow

Control flow can be explicit or implicit. Explicit control flow
is visible as an entity defines the order in which individual
services are executed. Conversely, implicit control flow is
opaque since it is not defined anywhere, but it is implicit in
the interactions of the participant services. Table I shows that
event-driven interactions do not support visible control flow as
it is implicit in the collaborative exchange of events (see Fig. 5)
[17], [27]. In both direct interactions and indirect interactions,
services are the entities who control the application flow, e.g.,
ECG Analysis defines a guard to execute Emergency when
a heart attack is detected (see Figs. 3 and 4). In exogenous
interactions, coordinators define control, e.g., EMoNet Workflow
Engine defines control structures to realize one-level exogenous
interactions for the EMoNet workflow (see Fig. 6(a)).

The amount of service interactions in IoT applications may
become overwhelming due to the huge number of nodes
involved. Since it is not visible, implicit control flow limits
the scalability of IoT applications as the number of services
grows and the complexity of service interactions increases.

TABLE I
EXPLICIT CONTROL FLOW IN SERVICE INTERACTION SCHEMAS.

Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Explicit control �ow

Implicit control flow has been an issue for software com-
panies over many years and it is undoubtedly a barrier for
IoT. For instance, Netflix has recently expressed that implicit
control flow limits the scalability of distributed applications,
as they found that process flows are spread across multiple
applications and it is difficult to monitor workflow processes.
As an attempt to visualize control flow, Netflix recently moved
from event-driven interactions to exogenous interactions [3].

Visualizing control flow (e.g., to find execution paths) in
event-driven interactions is challenging because it is necessary
to look at logs to understand the correlation between events [41].
This evidently makes it hard to monitor workflow execution,
debug code and modify application workflow. For instance, in
the event-based EMoNet workflow it is hard to know which is
the most popular ambulance, since there are many ambulances
involved. Explicit control flow helps to mitigate this problem
so a graphical user interface [3], [42] can be used to display a
visual representation of the blueprint with the paths the control
has taken during the execution of EMoNet.

In general, explicit control flow is crucial to facilitate the
monitoring, maintenance and evolution of IoT applications
[23], [3], [27].

B. RQ2: Separation between control and computation

IoT is characterized by heterogeneity in several forms,
e.g., different vendors, different hardware and a wide variety
of programming languages. For this reason, control and
computation should be orthogonal dimensions in every IoT
application, in order to enable a flexible integration of services
in a heterogeneous environment [43], [44], [45], [4].

Computation is the low-level functionality of an IoT node
(provided by a service), and control defines the logic to
realize service interactions. The separate reasoning of these
concerns enables application developers to focus on the IoT
application logic, whilst IoT service developers can focus on the
development of efficient service functionality. This separation
not only results in reduced time to market, but also reduced
software production and maintenance costs.

In both direct interactions and indirect interactions, a sender
and a receiver are tightly coupled in terms of control, since
control is always originated in the sender’s computation. For
example, in the EMoNet workflow done by either indirect
interactions or direct interactions, ECG Analysis is responsible
for the conditional control structure that passes control to
Emergency when a heart attack is detected (see Figs. 3 and 4).

Services mixing control with computation are not reusable,
as control flow may vary from one application to another.
Suppose we want EMoNet to execute a planning phase after the
analysis phase, in order to predict heart diseases and determine
heart attacks in real-time. To do so, the HPC Computing node,
providing the ECG Planning service, is introduced. In the
EMoNet workflow done by either direct interactions or indirect
interactions, both ECG Analysis and ECG Planning must be
changed to accommodate the new requirement. In particular, the
conditional control structure is removed from ECG Analysis and
added into ECG Planning which is now responsible for passing
control to Emergency (when a heart attack is detected). For
that reason, ECG Analysis is not reused in the new application.

Our analysis of the separation between control and computa-
tion is not applicable for event-driven interactions, since control
flow is implicit in this schema. Nevertheless, in event-driven
interactions, events are originated in service computation (see
Fig. 5). For example, Emergency and ECG Planning would
require changes in their computation so as to accommodate the
planning phase. In particular, ECG Planning needs to consume
the events produced by ECG Analysis, while Emergency needs
to consume the events produced by ECG Planning. For that
reason, Emergency is not reused in the new application.

Table II shows that only exogenous interactions separate
control from computation, as control is always originated
in the coordinator(s) (see Fig. 6). In contrast to the rest of
the schemas, exogenous interactions do not require changing
any service to support the planning phase, but only changing
the application logic defined in the coordinator(s). Thus, as
business requirements change, developers can manage changes
in the application logic without taking care of IoT service
functionality [43].

TABLE II
SEPARATION BETWEEN CONTROL AND COMPUTATION IN SERVICE

INTERACTION SCHEMAS.

Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Separation between
control and
computation

N/A

N/A

When events or control are originated in service computation,
an application workflow is embedded in the code of plenty of
services. This is in fact one of the reasons for which Netflix
stop using event-driven interactions. Exogenous interactions
is the only schema that enables the development of workflow-
agnostic services, as a consequence of the separation between
control and computation. For that reason, Netflix preferred the
use of exogenous interactions to event-driven interactions.

C. RQ3: Decentralized Service Interactions

Service interactions can be centralized or decentralized.
Centralized service interactions means that control, events (or
even data) pass through a single central entity. By contrast,

decentralized service interactions means that control, events (or
even data) are passed in a P2P fashion as workflow (expressed
by control or events) is distributed over two or more entities.

Table III shows that indirect interactions, one-level exoge-
nous interactions (i.e., orchestration) and broker-based event-
driven interactions are centralized schemas. Indirect interactions
require a service bus for passing control and data between
services (see Fig. 4). Broker-based event-driven interactions
use an event bus to handle events (see Fig. 5(b)). In one-level
exogenous interactions, a central engine defines a workflow
for passing control (and frequently data) between services (see
Fig. 6(a)).

TABLE III
DECENTRALIZATION IN SERVICE INTERACTION SCHEMAS.

Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Decentralization

Even though a centralized approach facilitates the design
and maintenance of an IoT application, it possesses several
drawbacks that have been recognized by many researchers [35],
[4], [46], [36]. For example, in Fig. 6(a) the data generated by
Wearable ECG Sensor (which is important for ECG Analysis)
will be routed through EMoNet Workflow Engine, even if this
data is unimportant to that coordinator. In general, a centralized
approach requires an extra network hop for service interactions.

Furthermore, IoT nodes usually generate a huge amount
of data. Hence, a central entity may potentially become a
performance bottleneck since all the communication will pass
through it; thereby, leading to high consumption of network
bandwidth, and therefore, unnecessary network traffic. A central
entity can also become a single point of failure and attack,
thereby impacting the availability of an IoT application.

No single organization should govern an entire workflow or
data, as an IoT application may cross administrative domains
and organizations may want control over their own part. For
example, EMoNet could cross two administrative domains: a
data analytics company that processes sensor data and a health
telemetry company that monitors patients’ heart rate.

According to [5], IoT nodes must possess the ability to
interact among themselves with no mediator between them.
Decentralized service interactions are more complex than their
counterpart, but they bring up increased scalability, availability
and reliability for an IoT application by:

• Improving concurrency, load balancing and fault-tolerance
due to the use of multiple loci of control or multiple event
handlers.

• Bringing performance enhacements (e.g., better through-
put) for service interactions.

• Reducing network traffic and latency. as no extra hop is
required for service interactions.

Table III shows that decentralization is present in direct in-
teractions, multi-level exogenous interactions (i.e., hierarchical

orchestration and exogenous connectors) and P2P event-driven
interactions. Direct interactions do not require any mediator
for passing control between services (see Fig. 3). In multi-level
exogenous interactions, coordinators are the only entities that
pass control to services or other coordinators (see Figs. 6(b)
and 6(c)). Similarly, P2P event-driven interactions do not rely
on a bus for event management, as every service is responsible
of its own queue (see Fig. 5(b)).

D. RQ4: Location Transparency

IoT is highly dynamic due to the intermittent connection
and spontaneous failures of IoT nodes, resulting in nodes (and
ergo services) frequently changing locations over time. For that
reason, churn is one of the main challenges of IoT applications
as they usually operate in a dynamic and uncertain environment
[6], [47]. For example, the Wearable ECG Sensor is a resource
constrained-node that can run out of battery with the subsequent
disconnection from the network. Similarly, an Ambulance may
experience frequent disconnections due to its high mobility.

Service location transparency is crucial to mitigate churn
in IoT applications, as it enables services to be unaware of
the physical location of other services. Table IV shows that
indirect interactions, broker-based event-driven interactions
and exogenous interactions provide location transparency. In
indirect interactions, the service bus is the only entity aware of
services’ locations. In broker-based event-driven interactions,
publishers and subscribers do not know the location of one
another, but they only know what events to produce and
consume, respectively. In exogenous interactions, coordinators
encapsulate services’ locations as they are responsible for
service interactions.

TABLE IV
LOCATION TRANSPARENCY IN SERVICE INTERACTION SCHEMAS.

Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Location
transparency

Direct interactions and P2P event-driven interactions do
not support location transparency, as they require senders to
know the location of receivers a priori. The main problem
of these schemas is that senders need to be changed every
time the receivers’ location change. Although this issue can
be solved using a service discovery mechanism (e.g., querying
a service registry) [8], it would require an extra network hop.
In fact, centralized interaction schemas enclose a discovery
component in the middleman [48]. Assuming there is no
discovery mechanism for the EMoNet workflow based on
direct interactions or P2P event-driven interactions, Emergency
must be updated every time an Ambulance changes location.
This is a frightening situation for EMoNet because there is a
huge number of ambulances constantly changing locations.

TABLE V
ANALYSIS OF SERVICE INTERACTION SCHEMAS.

Explicit control �ow

Separation between control and computation

Decentralized control �ow

Service location transparency

Direct interactions Indirect interactions Event-driven interactions Exogenous interactions

P2P Broker-based One-level Multi-level

NA NA

V. DISCUSSION

Table V summarizes the results of our qualitative evaluation.
It particularly shows how well service interaction schemas fulfill
the scalability requirements of IoT applications: explicit control
flow, separation between control and computation, decentralized
interactions, and service location transparency.

Direct interactions and indirect interactions cover 50% of
the requirements, respectively. Event-driven interactions is the
worst schema since it only meets 25% of those requirements
in both P2P and broker-based. Lacking only decentralization,
one-level exogenous interactions cover 75% of the desiderata.
Multi-level exogenous interactions is the only schema that
fulfills all the scalability requirements of IoT applications.

In some scenarios, it could be useful to combine interaction
schemas. For example, in order to provide asynchronous
interactions in EMoNet, services can combine event-driven
interactions with direct interactions. ECG Analysis can interact
via an event bus with both Heart Rate History and Emergency,
whilst Emergency can use direct interactions to request the
Assistance service of the nearest ambulance.

A service bus can be [21]: (i) distributed, (ii) with technical
intelligence or (iii) with business intelligence. Options (i) and
(ii) are used only for data and control routing, whilst (iii) can
be used to define coordination logic in addition [22]. Even
though it is typically used only for straightforward workflows,
(iii) is a special case of one-level exogenous interactions.

Although the Microservices community recommends the
avoidance of (iii) as they do not want business logic embedded
in a service bus [22], there is an increasing tendency to use
exogenous interactions for Microservices in traditional SOA
applications [34], [3]. By contrast, in the context of IoT, event-
driven interactions are currently more popular. However, given
the advantages of exogenous interactions, as evidenced by
their increasing adoption in traditional SOA applications, we
envision that exogenous interactions will increase in popularity
in Microservice-based IoT applications in the next years.

A Distributed Service Bus (DSB) [49] is often seen as a
decentralized approach due to the existence of a federation
of brokers. However, it consists solely of a distribution of
middleware components over different nodes. According to our
view of decentralization presented in Sec. IV-C, the existence
of an intermediary (or intermediaries) for service interactions
leads to a centralized approach. As we noted in Sec. IV-C, a
purely decentralized approach removes the need of a middleman
(or middlemen) which, among other issues, introduces an extra
network hop for service interactions.

In order to achieve decentralization, the Microservices
community fosters direct interactions between Microservices.
Nevertheless, direct interactions impact performance because a
connection must be open for the entire duration of an interac-
tion, and a Microservice participant needs a reference (i.e., a
client library) for every Microservice it communicates directly
with. Maintaining references to other Microservices is costly.
Furthermore, a HTTP connection may become a bottleneck,
especially for long running Microservices. This is undoubtedly
a problem for resource-constrained IoT nodes which do not
have communication and storage capabilities to support long-
running transactions or to store multiple references. To solve
this issue, the Internet Engineering Task Force (IETF) has
developed the Constrained Application Protocol (CoAP) [50].
CoAP has been proved to be a simpler and more cost-efficient
alternative to HTTP/REST in several IoT scenarios involving
resource-constrained nodes [51]. Nevertheless, CoAP does not
support the separation between control and computation.

The separation between control and data is also crucial for
the scalability of IoT applications. It means that data is never
passed alongside control, thereby allowing a separate reasoning
between data flow and control flow, which could result in
the development of an efficient data exchange approach. For
instance, a P2P data exchange can be used to reduce the number
of network hops, thereby avoiding network congestion as shown
by [46]. The separation between control and data also enables
the reuse of data flow without the need of modifying control
flow. Hence, data flow and control flow can evolve separately.
Exogenous connectors in multi-level exogenous interactions
provide semantics for the separation between control and
data. Although data typically follows control in orchestration
approaches, the separation between control and data has already
been done in such approaches [46], [52]. For the EMoNet
workflow based on exogenous interactions, we assumed that
there is no separation between control and data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we classified and analyzed service interactions
into four schemas, namely direct interactions, indirect interac-
tions, event-driven interactions and exogenous interactions.

We conducted a qualitative evaluation to determine which
interaction schema best fulfills the scalability requirements of
IoT applications: explicit control flow, decentralized interac-
tions, separation between control and computation, and service
location transparency. We showed that multi-level exogenous

interactions is the most promising schema since it meets all
the desiderata for the scalability of IoT applications.

Network performance is another aspect that needs to be
considered when tackling scalability. We would like to conduct
experiments to quantitatively evaluate the throughput of the
service interaction schemas presented in this paper.

To the best of our knowledge, there are no IoT platforms
based on multi-level exogenous interactions. As this is the
most promising schema for IoT, we hope to see its realization
in the coming years. In fact, we are currently working on the
development of such a platform.

REFERENCES

[1] “Internet of Things (IoT) connected devices installed base worldwide from
2015 to 2025 (in billions),” https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/, 2018.

[2] M. Abbott and M. Fisher, The Art of Scalability: Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise,
2nd ed. Addison-Wesley, 2015.

[3] Netflix, “Conductor,” https://netflix.github.io/conductor/, 2016.
[4] D. Wutke et al., “Model and infrastructure for decentralized workflow

enactment,” in ACM Symposium on Applied Computing, 2008, pp. 90–94.
[5] S. Roy and C. Chowdhury, “Integration of Internet of Everything (IoE)

with Cloud,” Beyond the Internet of Things, vol. 24, no. 6, pp. 199–222,
2017.

[6] R. Buyya and A. Dastjerdi, Internet of Things: Principles and Paradigms.
Amsterdam Boston Heidelberg: Morgan Kaufmann, 2016.

[7] J. Soriano et al., “Internet of Services,” Evolution of Telecommunication
Services, vol. 7768, pp. 283–325, 2013.

[8] D. Guinard et al., “Interacting with the SOA-Based Internet of Things:
Discovery, Query, Selection, and On-Demand Provisioning of Web
Services,” IEEE Transactions on Services Computing, vol. 3, no. 3,
pp. 223–235, 2010.

[9] M. Fowler and J. Lewis, “Microservices: A definition of this new
architectural term,” https://martinfowler.com/articles/microservices.html,
2014.

[10] K. Khanda et al., “Microservice-Based IoT for Smart Buildings,” in 31st
Int. Conference on Advanced Information Networking and Applications
Workshop, 2017, pp. 302–308.

[11] O. Zimmermann, “Microservices tenets,” Comput Sci Res Dev, vol. 32,
no. 3, pp. 301–310, 2017.

[12] R. Dijkman and M. Dumas, “Service-oriented design: A multi-viewpoint
approach,” Int. J. Coop. Info. Syst., vol. 13, no. 04, pp. 337–368, 2004.

[13] C. Pautasso et al., “Restful Web Services vs. ”Big”’ Web Services:
Making the Right Architectural Decision,” in Proceedings of the 17th
International Conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 805–814.

[14] “gRPC,” https://grpc.io/, 2018.
[15] R. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures,” PhD Thesis, University of California, Irvine,
2000.

[16] A. Barros et al., “Service Interaction Patterns,” in Int. Conference on
Business Process Management, 2005, pp. 302–318.

[17] Q. Sheng et al., “Web services composition: A decade’s overview,”
Information Sciences, vol. 280, pp. 218–238, 2014.

[18] T. Ahmed and A. Srivastava, “Service Choreography: Present and Future,”
in IEEE Int. Conference on Services Computing, 2014, pp. 863–864.

[19] I. Nakagawa et al., “Dripcast - Architecture and Implementation of
Server-less Java Programming Framework for Billions of IoT Devices,”
Journal of Information Processing, vol. 23, no. 4, pp. 458–464, 2015.

[20] M. Schmidt et al., “The Enterprise Service Bus: Making service-oriented
architecture real,” IBM Systems Journal, vol. 44, no. 4, pp. 781–797,
2005.

[21] N. Josuttis, Soa in Practice: The Art of Distributed System Design.
O’Reilly Media, Inc., 2007.

[22] C. Pautasso et al., “Microservices in Practice, Part 2: Service Integration
and Sustainability,” IEEE Software, vol. 34, no. 2, pp. 97–104, 2017.

[23] S. Newman, Building Microservices, 1st ed. O’Reilly Media, 2015.
[24] L. Gong, “A software architecture for open service gateways,” IEEE

Internet Computing, vol. 5, no. 1, pp. 64–70, 2001.

[25] D. Happ and A. Wolisz, “Limitations of the Pub/Sub pattern for cloud
based IoT and their implications,” in Cloudification of the Internet of
Things, 2016, pp. 1–6.

[26] Y. Zhang et al., “Integrating Events into SOA for IoT Services,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 180–186, 2017.

[27] M. Fowler, “What do you mean by ”Event-Driven”?”
https://martinfowler.com/articles/201701-event-driven.html, 2017.

[28] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and
Informatics Journal, vol. 1, no. 1, pp. 35–46, 2016.

[29] J. Soldatos et al., “OpenIoT: Open Source Internet-of-Things in the
Cloud,” in Interoperability and Open-Source Solutions for the Internet
of Things, 2015, pp. 13–25.

[30] A. Antonić et al., “A mobile crowd sensing ecosystem enabled by CUPUS:
Cloud-based publish/subscribe middleware for the Internet of Things,”
Future Generation Computer Systems, vol. 56, pp. 607–622, 2016.

[31] K.-K. Lau et al., “Exogenous Connectors for Software Components,” in
8th Int. Conference on Component-Based Software Engineering, 2005,
pp. 90–106.

[32] S.-S. Jongmans et al., “Orchestrating web services using Reo: From
circuits and behaviors to automatically generated code,” Service Oriented
Computing and Applications, vol. 8, no. 4, pp. 277–297, 2014.

[33] C. Lee et al., “Blueprint Flow: A Declarative Service Composition
Framework for Cloud Applications,” IEEE Access, vol. 5, pp. 17 634–
17 643, 2017.

[34] S. Alpers et al., “Microservice Based Tool Support for Business Process
Modelling,” in IEEE 19th Int. Enterprise Distributed Object Computing
Workshop, 2015, pp. 71–78.

[35] G. Chafle et al., “Decentralized Orchestration of Composite Web Services,”
in 13th International World Wide Web Conference (WWW ’04), 2004,
pp. 134–143.

[36] W. Jaradat et al., “Towards an autonomous decentralized orchestration
system,” Concurrency Computat.: Pract. Exper., vol. 28, no. 11, pp.
3164–3179, 2016.

[37] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in 10th IEEE International Conference on Service
Oriented Computing and Applications (SOCA ’17), 2017, pp. 125–132.

[38] D. Arellanes and K. K. Lau, “D-XMAN: A Platform For Total Compo-
sitionality in Service-Oriented Architectures,” in 7th IEEE International
Symposium on Cloud and Service Computing (SC2 ’17), 2017, pp. 283–
286.

[39] D. Arellanes and K.-K. Lau, “Algebraic Service Composition for User-
Centric IoT Applications,” in 3rd International Conference on Internet
of Things, 2018.

[40] Intel, “IoT Services Orchestration Layer,” http://01org.github.io/intel-iot-
services-orchestration-layer, 2016.

[41] A. Burattin et al., “Control-flow discovery from event streams,” in IEEE
Congress on Evolutionary Computation, 2014, pp. 2420–2427.

[42] “Zipkin,” https://zipkin.io/, 2018.
[43] “Amazon Simple Workflow Service (SWF),”

https://aws.amazon.com/swf/, 2018.
[44] F. Leymann, “Web Services: Distributed Applications Without Limits.”

in Database Systems for Business, Technology and Web, vol. 26, 2003,
pp. 2–23.

[45] K.-K. Lau et al., “A Component Model for Separation of Control Flow
from Computation in Component-Based Systems,” Electronic Notes in
Theoretical Computer Science, vol. 163, no. 1, pp. 57–69, 2006.

[46] A. Barker et al., “The Circulate architecture: Avoiding workflow
bottlenecks caused by centralised orchestration,” Cluster Computing,
vol. 12, no. 2, pp. 221–235, 2009.

[47] P. Barnaghi and A. Sheth, “On Searching the Internet of Things:
Requirements and Challenges,” IEEE Intelligent Systems, vol. 31, no. 6,
pp. 71–75, 2016.

[48] A. Ngu et al., “IoT Middleware: A Survey on Issues and Enabling
Technologies,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 1–20,
2017.

[49] F. Baude et al., “ESB federation for large-scale SOA,” in ACM Symposium
on Applied Computing, 2010, pp. 2459–2466.

[50] Z. Shelby et al., “Constrained Application Protocol (CoAP),”
https://datatracker.ietf.org/doc/rfc7252/, 2014.

[51] “Comparing the cost-efficiency of CoAP and HTTP in Web of Things
applications,” Decision Support Systems, vol. 63, pp. 23–38, 2014.

[52] C. Pautasso, “Composing RESTful services with JOpera,” in 8th Int.
Conference on Software Composition, 2009, pp. 142–159.

